Technischer Bericht Nr. 192

Reflexionsmessungen

an passiven linearen Mikrowellennetzwerken

von

Dr.-Ing. Bernhard Strebel

Berlin 1 9 7 6

EINSTEINUFER 37 1000 BERLIN 10

REFLEXIONSMESSUNGEN

AN PASSIVEN LINEAREN MIKROWELLENNETZWERKEN

Januar 1976

B. Strebel

TECHNISCHER BERICHT NR. 192

Reflexionsmessungen

an passiven linearen Mikrowellennetzwerken

Zusammenfassung:

Passive lineare Mikrowellennetzwerke, die im Sinne der Streumatrixtheorie aus Verzweigungen und Mehrwellentypleitern aufgebaut sind, können auf verschiedene Weise durch Reflexionsmessung analysiert werden. Grundlage bildet die Ausmessung der Reflexionsstreumatrix eines (1,n)-Tores mittels Abtastund Resonanzverfahren sowie Verzweigungsschaltungen. Hieraus lassen sich für Wellenleiterverzweigungen die Methoden der Abtastschwingungsanalyse und der Einhüllendentransformation ableiten. Als weitere Meßobjekte werden kurze Hohlkabel, Kettenschaltungen, Leitungen und periodisch variierende Netzwerke behandelt.

Der Bearbeiter

B. Strebel

(Dr.-Ing. B. Strebel)

Der Abteilungsleiter

W Elivid

(Dr.-Ing. W.-E. Herold)

Berlin, den 26. August 1976

Der Geschäftsführer H Christope. (Dr.-Ing. H.Ohnsorge)

Reflexionsmessungen

an passiven linearen Mikrowellennetzwerken

von

Dr. Bernhard Strebel

Inhalt

	Seite
1. Einleitung	6
2. Definition der Reflexionsstreumatrix	8
3. Reflexionsmessung in einem Wellenleiter	10
3.1 Oberflächenabtastung	10
3.1.1 Prinzip	10
3.1.2 Einwellentypleiter	11
3.1.3 Der Kreishohlleiter mit	
mehreren Wellentypen	18
a) Grundgleichungen	18
b) Messung der Abtastschwingungen	23
c) Die H ₀₁ -Welle mit schwacher	
Wellentypumwandlung	28
d) Phasenempfindliche Oberflächen-	
abtastung	30
3.1.4 Die allgemeine Zuleitung	31
3.2 Reflexionsmessung mit Verzweigungs-	
schaltungen	32
3.3 Resonanzmeßverfahren	37
3.3.1 Prinzip	37
3.3.2 Der Reflexionsresonator niedriger Güte	40
3.3.3 Der Reflexionsresonator hoher Güte	46
3.3.4 Der abgetastete Resonator hoher Güte	52
3.3.5 Abtastung eines H ₀₁ -gespeisten	
Störwellentypresonators	56

- 3 -

	Seite
4. Reflexionsmessungen an Wellenleiter-	
verzweigungen	59
4.1 (2,n)-Tore	60
4.2 Analyse der schnellen Abtastschwingungen	
im Eingangsleiter des (2,n)-Tores	65
4.3 Reflexionsmessung am Zweiraumresonator	73
4.4 (n,n)-Tore	76
4.5 Die punktförmige Leitungsstörung	79
5. Reflexionsmessungen an kurzen Hohlkabeln	85
5.1 Wellenausbreitung im ungleichförmigen	
Hohlleiter	85
5.2 Der Resonator mit konstanter Krümmung	88
5.3 Der Reflexionsresonator mit periodischer	
Wellentypkopplung	91
6. Messungen an Kettenschaltungen und	
Leitungen	94
6.1 Das Signalflußdiagramm im Frequenz- und	
Zeitbereich	94
6.2 Raumharmonischenanalyse	97
6.3 Messung des Umkehrintegrals der Fourier-	
transformation	109
6.4 Prüfung mit definierten Testfunktionen	110
6.4.1 Breitbandimpulsreflektometer	110
6.4.2 Schmalbandimpulsreflektometer	114

7. Messungen an periodisch variierenden	
Netzwerken	116
7.1 Meßprinzipien	116
7.2 Reflexionsmessung am Halbleiter	118
8. Zusammenfassung	122
Anhang	128
A1 Herleitung der Abtastkoeffizienten	
für den Kreishohlleitermantel	128
A2 Berechnung der Abtastschwingungen	131
A3 Berechnung des Reflexionsresonators	134
A4 Berechnung des abgetasteten Resonators	147
A5 Reflexionsresonator mit punktförmiger	
Leitungsstörung	150
A6 Resonator mit konstanter Krümmung	152
Liste der benutzten Symbole	155
Schaltungssymbole	162
Literatur	166

1. Einleitung

Die Analyse passiver linearer Netzwerke stellt ein vielseitiges Teilgebiet der Mikrowellenmeßtechnik dar. Die Meßaufgaben stammen aus dem weiten Anwendungsspektrum der Mikrowellentechnik, das von der Nachrichtenübertragung, der Steuerung von Bahnen und der Funkortung bis zur Untersuchung von Werkstoffen reicht.

Die Netzwerke bilden entweder selbst das Meßobjekt oder dienen der Untersuchung definierter Objekte, die in das Netzwerk zu Meßzwecken eingefügt werden. Das Ziel der Analyse ist daher die Bestimmung der komplexen Streumatrixelemente des Gesamtnetzwerks oder bestimmter Einzelbestandteile.

Die vorliegende Arbeit untersucht die Anwendbarkeit der Reflexionsmessung auf Netzwerke, die im Sinne der Streumatrixtheorie aus Verzweigungen und Mehrwellentypleitern aufgebaut sind. Damit wird vorausgesetzt, daß im Netzwerk nur reziproke Elemente mit nicht allzuhoher Dämpfung enthalten sind.

Zur Reflexionsmessung an Mikrowellennetzwerken lassen sich je nach Meßproblem und Frequenzlage als wichtigste Prinzipien die Feldabtastung, Richtkopplung, Interferenz, Resonanz und Impulsantwort verwenden. Die einzelnen Meßverfahren werden besonders im Hinblick auf eine schnelle Gewinnung der Netzwerkparameter und ihre Eignung zur Rechnerauswertung speziell durch die schnelle Fouriertransformation gesehen.

Nach Einführung der Reflexionsstreumatrix wird die Reflexionsmessung in einem Mehrwellentypleiter behandelt. Ein unbekannter Wellenleiterabschluß verkoppelt und reflektiert die ausbreitungsfähigen Wellentypen . Vorausgesetzt wird die Kenntnis der Feldstrukturen und der Ausbreitungskonstanten der Wellentypen im Zuführungsleiter des Meßobjekts. Die Erweiterung der Reflexionsmeßverfahren auf Verzweigungen mit mehreren Wellenleiterausgängen gelingt mit Hilfe definiert zeitlich variierender Abschlüsse. Einem Kapitel über die Reflexionsmessung an kurzen Hohlkabeln folgt der Vergleich verschiedener Meßverfahren für Kettenschaltungen und Leitungen. Den Abschluß bilden Messungen an periodisch variierenden Netzwerken, wo auch die Reflexionsmessungen an impulsmäßig belasteten Indiumantimonidkristallen beschrieben sind.

Die vorliegende Arbeit soll sich einfügen in die derzeit beobachtbare Entwicklung der Meßverfahren zu höherer Schnelligkeit, Genauigkeit und Rechnerkompatibilität.

- 7 -

2. Definition der Reflexionsstreumatrix

Ein lineares Mikrowellennetzwerk besteht nach Brand [1] aus homogenen Wellenleitern und Verzweigungen. In den homogenen Wellenleitern können sich verschiedene Wellentypen unabhängig voneinander ausbreiten, während die Verzweigungen mit ihren Wellentypverkopplungen der Berechnung nur schwer zugänglich sind. Die Verzweigungen werden deshalb von bestimmten Bezugsebenen der homogenen Wellenleiter aus durch Angabe der zu- und ablaufenden Wellengrößen definiert. Somit sind die Meßobjekte meistens Verzweigungen, aber die Messungen werden in den Wellenleitern vorgenommen.

Das Schema einer Reflexionsmessung zeigt Bild 1. Der Wellenleiter ist durch Ersatzleitungen dargestellt, auf denen sich die zu- und ablaufenden Wellengrößen \underline{a}_{ψ} und \underline{b}_{ψ} ausbreiten. Die \underline{a}_{ψ} und \underline{b}_{ψ} sind durch die Streumatrix des reflektierenden Meßobjekts, die Reflexionsstreumatrix (\underline{S}_{R}), miteinander verbunden:

$$\begin{pmatrix} \underline{b}_{1} \\ \underline{b}_{2} \\ \vdots \\ \underline{b}_{n} \end{pmatrix} = \begin{pmatrix} \underline{S}_{44} & \underline{S}_{12} & \cdots & \underline{S}_{4n} \\ \underline{S}_{24} & \underline{S}_{22} & \cdots & \underline{S}_{2n} \\ \vdots & \vdots & & \vdots \\ \underline{S}_{n1} & \underline{S}_{n2} & \cdots & \underline{S}_{nn} \end{pmatrix} \begin{pmatrix} \underline{a}_{4} \\ \underline{a}_{2} \\ \vdots \\ \underline{a}_{n} \end{pmatrix}$$
(4)

8

Meßebene Meßobjekt

Bild 1: Schema einer Reflexionsmessung

<u>Bild 2</u>: Signalflußdiagramm der Reflexionsstreumatrix Die Situation läßt sich durch ein Signalflußdiagramm Bild 2 veranschaulichen. Gesucht sind die Eigenreflexionsfaktoren $\underline{S}_{\psi\psi}$ der Wellentypen und ihre Transmissionsfaktoren $\underline{S}_{\mu\psi}$ nach Betrag und Phase.

Bei Verzweigungen mit mehreren Wellenleiterausgängen stellt die Reflexionsstreumatrix eine Untermatrix der Gesamtstreumatrix dar. Es sollen hier solche Meßverfahren dargestellt werden, bei denen die Reflexionsstreumatrix in einem Wellenleiter der Verzweigung gemessen wird, während die anderen Ausgänge geeignete Abschlüsse erhalten.

3. Reflexionsmessung in einem Wellenleiter

3.1 Oberflächenabtastung

3.1.1 Prinzip

Eine naheliegende Methode zur Bestimmung der zu- und ablaufenden Wellengrößen in einem homogenen Wellenleiter ist die Abtastung der Oberflächenfeldstärken, de die resultierende Feldstärkeverteilung an der Oberfläche den im Innern laufenden Wellentypen eindeutig zugeordnet ist. Zu diesem Zweck werden feste oder bewegliche Sonden zur Messung der elektrischen oder magnetischen Feldstärke am Wellenleitermantel angebracht.

- 10 -

Bild 3 zeigt schematisch einige gebräuchliche Abtastvorrichtungen für Einwellentypleiter. Die Auskoppelsonden messen meistens das elektrische Transversalfeld. Zur Feldanalyse in einem Mehrwellentypleiter werden häufig der Rotationsanalysator [2] [3] oder der Rechteckhohlleiter mit festen Sonden [4] verwendet (Bild 4). Das Koppelloch des Rotationsanalysators ist um die Kreishohlleiterachse und der Rechteckhohlleiter um die Achse des Koppelloches drehbar. Am Koppelloch wird die zur Breitseite des Rechteckhohlleiters parallele resultierende magnetische Feldkomponente gemessen. Bei einigen Geräteausführungen läßt sich auch das Loch in Achsrichtung des Kreishohlleiters verschieben.

3.1.2 Einwellentypleiter

Bei der Messung im Einwellentypleiter reduziert sich die Reflexionsstreumatrix auf den Eigenreflexionsfaktor <u>S</u>₁₁. Nach Bild 5 wird mit einer Sonde im Abstand 1 von der Reflexionsebene bei quadratischem Detektor an einem Instrument der Ausschlag h erzeugt:

(2)

 $h = M | \underline{a}_1 + \underline{b}_1 |^2 = M | \underline{a}_1 |^2 | 1 + \underline{5}_{11} e^{-\frac{1}{3}^2 \beta \ell} |^2$

Durch Anderung der Länge 1 oder des vorgeschalteten Phasenschiebers läßt sich <u>S</u>₁₁ bestimmen, wobei die Phase mit einer Vergleichsmessung an einem Kurzschluß in der Bezugsebene ermittelt wird.

- 11 -

Bild 3: Abtastvorrichtungen für Einwellentypleiter

- a Gerade Meßleitung
- b Rotierende Meßleitung
- c Zweisondenmeßleitung
- d Feste Sonde mit Phasenschieber
- e Vier feste Sonden

<u>Bild4</u>: Abtastvorrichtungen für Mehrwellentypleiter a Rotationsanalysator b Rechteckhohlleiter mit festen Sonden

<u>Bild5</u> : Signalflußdiagramm der Sondenabtastung

13 -

Bei der schnellen Messung eines zeitlich konstanten S_{11} kann die Sonde in Längsrichtung gleichmäßig durchgeschoben werden. Der Meßwert erscheint dann als mit λ_{12} periodische Funktion:

$$h = M |g_{4}|^{2} (1 + \frac{5}{44} e^{-\frac{1}{2}\beta_{4}\ell}) (1 + \frac{5}{44} e^{\frac{1}{2}\beta_{4}\ell})$$
(3)
= M |g_{4}|^{2} (1 + |\frac{5}{44}|^{2} + 2|\frac{5}{44}|\cos[2\beta_{4}\ell - g_{44}])

Amplitude und Phase der cos-Schwingung genügen zur exakten Bestimmung von <u>S</u>11.

Auch mit einer feststehenden Sonde kann die Messung nach Gleichung(3) ausgeführt werden, wenn die cos-Schwingung durch Frequenzänderung oder Vorschalten eines Phasenschiebers erzeugt wird. Falls die Frequenz durchgestimmt wird, ergibt Gleichung (3):

$$h = M \left[\frac{\alpha_1}{2} \left(1 + \left[\frac{5}{11} \right]^2 + 2 \left[\frac{5}{11} \right] \cos \left[\frac{4\pi \ell}{v_1} f - \frac{6}{11} \right] \right) (3a)$$

Wenn vor die feste Sonde ein Phasenschieber geschaltet wird, so erhält man nach Bild 6:

$$h = M |\underline{a}_{1}|^{2} (1 + |\underline{s}_{11}|^{2} + 2 |\underline{s}_{11}| \cos [2g + 2\beta_{1}l - g_{11}])$$
(3b)

- 14 -

Bild 7 : Zweisondenmeßleitung

Bild 8 : Viersondenanordnung

- 15 -

Die Zweisondenmeßleitung [5] besitzt in 2/4-Abstand eine bewegliche und eine feste Sonde. Meßebene sei gemäß Bild 7 die der festen Sonde 2. Die quadratisch gleichgerichteten Sondenspannungen werden einem Differenzverstärker zugeführt, dessen Ausgangsspannung nach Gleichung (3) lautet:

$$h_{2} - h_{1} = 2 M |\underline{a}_{1}|^{2} |\underline{S}_{11}| \left\{ \cos(2\beta_{1}\ell - g_{11}) - \cos\left[2\beta_{1}(\ell + \frac{\lambda}{4}) - g_{11}\right] \right\}$$

= 4 M |\underline{a}_{1}|^{2} |\underline{S}_{11}| \cos(2\beta_{1}\ell - g_{11}) (4)

In Gleichung (4) ist an beiden Sonden eine gleiche Auskoppeldämpfung vorausgesetzt. Die Meßanordnung beseitigt das durch die quadratische Gleichrichtung entstehende

[S_11]² und erzeugt eine mittelwertfreie cos-Schwingung,
wenn 1, f oder g₁₁ geändert werden. Die Zweisondenmeßleitung mit quadratischen Detektoren und Differenzverstärker liefert also den Realteil des in die Ebene der
Sonde 2 transformierten Reflexionsfaktors:

$$h_2 - h_1 = 4 M |\underline{a}_1|^2 R_u \left\{ \frac{5}{2} + e^{-j^2 \beta_1 \ell} \right\}$$
 (5)

Vergrößert man die Entfernung beider Sonden von der Reflexionsebene um $\frac{2}{8}$, so erscheint am Ausgang:

$$h_{4} - h_{3} = 4 M |\underline{a}_{1}|^{2} |\underline{s}_{11}| \cos \left[2\beta_{1}(\ell + \frac{\lambda_{1}}{8}) - g_{11}\right]$$
$$= -4 M |\underline{a}_{1}|^{2} |\underline{s}_{11}| \sin (2\beta_{1}\ell - g_{11})$$

Diese Anzeige kann als negativer Imaginärteil des in den Abstand 1 transformierten <u>S₁₁</u> gedeutet werden:

$$h_3 - h_4 = 4 M | \alpha_1|^2 I_m \left\{ \sum_{i=1}^{-j^2 \beta_1 \ell} \right\}$$
 (6)

Die Anordnung mit vier festen Sonden [6] (Bild 8) gestattet somit die gleichzeitige Messung des Real- und Imaginärteils von \underline{S}_{11} . Wenn je eine kapazitive und eine induktive Sonde im $\frac{2\sqrt{8}}{8}$ -Abstand angeordnet wird, so reduziert sich der Platzbedarf.

Die Quotientenbildung der Ausgangsspannungen [7] von drei oder vier Sonden führt zu Meßwerten, die mit Hilfe spezieller Ortskurven im Smith-Diagramm ausgewertet werden müssen, sodaß dieses Verfahren für schnelle Messungen ausscheidet.

Mehrsondenmethoden mit Differenzbildung der Ausgangsspannung eignen sich gut zur Registrierung eines schnell variierenden <u>5</u>11 bei konstanter Meßfrequenz. Automatische Breitbandmessungen sind jedoch mit ihnen nur schwer zu realisieren, weil die Sondenabstände eingehalten werden müssen. 3.1.3 Der Kreishohlleiter mit mehreren Wellentypen a) Grundgleichungen

Das Vielwellentypfeld im Kreishohlleiter kann ebenfalls durch Abtastung der Oberflächenfelder am Mantel bestimmt werden. Die dort auftretenden elektrischen und magnetischen Felder sind für den Fall linearer Polarisation in A1 als Funktion der zu- und ablaufenden Wellengrößen berechnet:

H [mn] - Wellen:

$$\underline{H}_{z}(z) = \left\{ \underline{a}(z) + \underline{b}(z) \right\} c_{\underline{z}[mn]} \cos(m \psi - \psi_{[mn]})$$

$$\underline{H}_{\psi}(z) = \left\{ \underline{a}(z) - \underline{b}(z) \right\} C_{\psi[mn]} \sin(m \psi - \psi[mn])$$
(7)

$$\underline{E}_{r}(z) = \left\{ \underline{a}(z) + \underline{b}(z) \right\} c_{r[mn]} \sin(m\psi - \psi_{[mn]})$$

E(mn)-Wellen:

$$\underline{H}_{\Psi}(z) = \left\{ \underline{\alpha}(z) - \underline{b}(z) \right\} c_{\psi(mn)} \cos(m\psi - \psi_{(mn)})$$

$$= \left\{ \underline{\alpha}(z) + \underline{b}(z) \right\} c_{\gamma(mn)} \cos(m\psi - \psi_{(mn)})$$
(8)

Die Abtastkoeffizienten $c_z [mn]$, $c_{\gamma} [mn]$, $c_r [mn]$, $c_{\gamma} (mn)$ und $c_{r(mn)}$ hängen nur vom Durchmesser, der Betriebsfrequenz und dem Wellentyp ab. In A1 findet man die Zusammenstellung der Berechnungsformeln. Die in den Messungen verwendeten Sonden gestatten die getrennte Auskopplung der H_z , H_y - und E_r -Feldstärken, wobei die H_z -Abtastung eine Sonderstellung einnimmt, weil hier die E-Wellen abgespalten werden.

Setzt man an die Stelle des Indexpaares mn den Index µ, so erscheint als resultierendes H_z -Oberflächenfeld nach Gleichung (7):

$$\underline{H}_{\mathbf{z}}(\mathbf{z})_{ges} = \sum_{\mu=1}^{n} \left[\left\{ \underbrace{Q}_{\mu}^{(4)} + \underbrace{b}_{\mu}^{(4)} \right\} \cos(m_{\mu}\psi - \psi_{\mu}) + \left\{ \underbrace{Q}_{\mu}^{(2)} + \underbrace{b}_{\mu}^{(2)} \right\} \sin(m_{\mu}\psi - \psi_{\mu}) \right] C_{\mathbf{z}\mu} \qquad (9)$$

Auf der Zuleitung zum Meßobjekt existieren also n verschiedene Wellentypen mit ihren zu- und ablaufenden Wellengrößen in zwei Polarisationsrichtungen, die durch hochgestellte Indizes bezeichnet werden. Nach Bild 9a erscheint bei der H_z-Abtastung an einem angepaßten Detektor die Wellengröße:

(10)bges = $\frac{1}{2}\sum_{\mu=4}^{n} \left\{ \frac{a_{\mu}}{2} + \left(\sum_{\mu=4}^{n} \frac{s_{\mu}}{2} + \sum_{$

$$+ \left\{ \frac{a_{\mu}^{(2)}}{a_{\mu}^{2} + \left(\sum_{\mu=1}^{n} \sum_{\mu\neq a_{\mu}^{(2+1)}}^{(2+1)} \frac{a_{\mu}}{a_{\mu}^{2} + \sum_{\mu\neq a_{\mu}^{(2+1)}}^{(2+1)} \sum_{\mu\neq a_{\mu}^{(2+1)}}^{(2+1)} \frac{a_{\mu}^{(2+1)}}{a_{\mu}^{2} + \sum_{\mu\neq$$

<u>Bild 9a</u> : Oberflächenabtastung eines Vielwellentypleiters

In Gleichung (10) beschreibt <u>k</u> dan Übertragungsfaktor zwischen dem magnetischen Oberflächenfeld und dem Detektor. Die Polarisationen 1 und 2 sind im Meßobjekt über $\underline{S}_{\mu\nu}^{(21)}$ und $\underline{S}_{\mu\nu}^{(12)}$ grundsätzlich miteinander verkoppelt, wobei jedoch zu jedem Wellentyp ein beliebiges \underline{V}_{μ} gehört. Die Gleichung (10) beschreibt also die Abtastung elliptisch polarisierter hin- und rücklaufender Wellen. Die beiden Polarisationsrichtungen jedes Wellentyps sind im Sinne der Streumatrixschreibweise durch unterschiedliche Wellentypen gekennzeichnet. Ein Beispiel für die azimutale Abhängigkeit der magnetischen Oberflächenfeldstärken am Mantel eines Kreishohlleiters zeigt Bild 9b.

<u>Bild 9 b</u> : Beispiel für die azimutale Abhängigkeit der magnetischen Oberflächenfeldstärken am Mantel eines Kreishohlleiters Wellentypen : E₁₁, H₀₁, H₂₁, H₃₁ Das Bild stellt die Überlagerung eines Gemischs rein fortschreitender lineer polarisierter $E_{11} - , H_{01} - ,$ $H_{21} - und H_{31}$ -Wellen dar. Die an einem Durchmesser von 8 mm bei einer Frequenz von 129,5 GHz gemessenen Kurven [43] wurden mittels Fourieranalyse ausgewertet. Wegen der quadratischen Gleichrichtung am Detektor entsteht ein nichtlineares Gleichungssystem der Spektralanteile, das aufgelöst werden kann, wenn die H_{11} -Welle weggefiltert wird. Sobald eine Änderung der Meßkurve in z-Richtung auftritt, muß auch eine Analyse der z-Harmonischen zur Trennung von Wellen mit unterschiedlichem zweiten Index durchgeführt werden.

Zur Bestimmung der Reflexionsstreumatrix muß man grundsätzlich annehmen, daß alle Wellentypen miteinander verknüpft sind. Es genügt nicht, das zu- und ablaufende Gemisch zu untersuchen, sondern es muß das Meßobjekt mit nur einem Wellentyp gespeist werden. Dann kann man die Überlagerung der einen zulaufenden linear polarisierten Welle mit dem reflektierten Wellengemisch im Zuführungshohlleiter analysieren. Läuft auf das Meßobjekt nur die Wellengröße $\underline{a}_{\mu\nu}^{(4)}$ zu, so vereinfacht sich die Gleichung (10) erheblich:

 $b_{ges} = \underline{R} \underline{\alpha}_{\mu}^{(4)} \left[c_{\underline{z}\mu} \cos(m_{\mu} \psi - \psi_{\mu}) \right]$

+ $\sum_{n}^{n} \left\{ \sum_{x\mu}^{(41)} \cos(m_{x}\psi - \psi_{y}) + \sum_{y\mu}^{(21)} \sin(m_{y}\psi - \psi_{y}) \right\} c_{z\psi}^{-j(\beta_{y} + \beta_{\mu})(l-z)}$

(11)

- 22 -

b) Messung der Abtastschwingungen

Das Koordinatensystem wird bei der Messung so gewählt, daß ψ_{μ} = 0 ist. Die Polarisationsrichtungen aller Typen werden mit $\psi_{+} = \psi_{\mu}$ festgelegt, also auf die Richtung der anregenden Wellen bezogen. Dann ergibt sich nach A 2 am Ausgang des quadratischen Gleichrichters die Anzeige:

$$h = M_0 |\underline{b}_{ges}|^2 = h_0 + h_+(z) + h_-(z)$$
 (12)

Die einzelnen Bestandteile der Detektorausgangsspannung sind hier geordnet nach ihrem Verhalten bei Verschiebung der Sonde in Ausbreitungsrichtung z. hn ändert sich nicht bei der Längsverschiebung der Sonde, während h_ und h_ durch Überlagerung der hinund rücklaufenden Wellen in z-Richtung schwanken. Bei gleichmäßig bewegter Abtastsonde erscheinen die Wellen dopplerverschoben am Auskoppelloch und werden im quadratischen Detektor gemischt. In diesem Sinne entsteht h_ aus den Mischprodukten des hinlaufenden Typs mit allen rücklaufenden Wellentypen und dreht seine Phase schnell. h, erfaßt somit die schnellen Abtastschwingungen. h_ wird dagegen durch die Mischung aller vom Meßobjekt reflektierten Wellen gebildet. Die einzelnen Bestandteile von h variieren deshalb langsam entsprechend ihrer Schwebungswellen-

- 23 -

länge. h_ erfaßt die langsamen Abtastschwingungen.

- 24 -

Die schnellen und langsamen Abtastschwingungen entstehen ähnlich wie die schnellen und langsamen longitudinalen Raumladungswellen im Elektronenstrahl oder im driftenden Halbleiterplasma. Die Funktion des Elektronenstrahls wird hier von dem bewegten Abtaster mit quadratischem Gleichrichter übernommen.

Da bei der Abtastung am Zylindermantel ausschließlich trigonometrische Funktionen auftreten, können durch eine zweidimensionale Fourieranalyse die Streumatrixelemente des Meßobjekts ermittelt werden. h ist rotations- und ausbreitungsharmonisch.

Zur vollständigen Bestimmung der Reflexionsstreumatrix genügt die Analyse der Abtastschwingungen von h₊ . h₀ und h_ scheiden bei genügend großen Schwebungswellenlängen aus. Nach A 2 gilt:

$$\begin{split} h_{+} &= M c_{\overline{z}\mu} \sum_{\eta=1}^{n} c_{\overline{z}+} \left\{ \sum_{\nu=1}^{(14)} W_{\mu\nu}^{(1)}(\psi) \cos\left[(\beta_{\nu} + \beta_{\mu})(\ell - \overline{z}) - g_{\nu\mu}^{(14)} \right] \right. \\ &+ \left. \sum_{\nu=1}^{(24)} W_{\mu\nu}^{(2)}(\psi) \cos\left[(\beta_{\nu} + \beta_{\mu})(\ell - \overline{z}) - g_{\nu\mu}^{(24)} \right] \right\} \end{split}$$

(13)

Darin bedeuten:

$$W_{\mu\nu}^{(1)}(\psi) = \cos(m_{\psi} + m_{\mu})\psi + \cos(m_{\psi} - m_{\mu})\psi \quad (14)$$

$$W_{\mu\nu}^{(2)}(\psi) = \sin(m_{\psi} + m_{\mu})\psi + \sin(m_{\psi} - m_{\mu})\psi \quad (15)$$

Die Fourieranalyse der Abtastschwingungen nach Gleichung (13) entspricht der Linearisierung durch die Zweisondenmeßleitung im Einwellentyphohlleiter. Jeder Bestandteil von h₊ stellt den Realteil des in die Meßebene transformierten Streumatrixelements dar.

Durch Einstellung von $\mathbb{W}_{\mu\nu\nu}^{(1)}(\psi) = 0$ oder $\mathbb{W}_{\mu\nu\nu}^{(2)}(\psi) = 0$ lassen sich die Anteile beider Polarisationsrichtungen nach Betrag und Phase aus dem Amplituden- und Phasenspektrum der Abtastschwingungen ermitteln.

Im Kreishohlleiter mit weitem Querschnitt erscheinen bei hohen Frequenzen große Schwebungswellenlängen zwischen den einzelnen Wellentypen. Wenn aber die Bestandteile zweier Wellentypen in h, mittels fourieranalyse getrennt werden sollen, so muß die Sonde um wenigstens eine Schwebungswellenlänge der zu untersuchenden Wellentypen verschoben werden.

- 25 -

Da die mechanische Längsverschiebung der Sonde über eine größere Strecke schwer zu realisieren ist, sollte stattdessen die Mikrowellenfrequenz gewobbelt werden. wobei die Länge 1 - z durch die Breitbandigkeit des **MeGobiekts bestimmt ist.** Durch zweidimensionale Fourieranalyse ist eine Reduktion des Abtast- bzw. Frequenzhubes möglich, da Wellentyppaare mit großer Schwebungswellenlänge unterschiedliche azimutale Laufzahlen m besitzen. Die Polarisationsrichtungen können dadurch getrennt werden, daß die Rotationsharmonischen ausgefiltert und winkelabhängig gleichgerichtet werden. Die Fourieranalyse der schnellen Abtastschwingungen bei Speisung mit mehreren zulaufenden Wellentypen führt auf ein nichtlineares Gleichungssystem, sobald die Zusammensetzung des zulaufenden Wellentypgemischs unbekannt ist.

Das Schaltbild zur Oberflächenabtastung des vom Meßobjekt reflektierten Wellentypgemischs zeigt Bild 10.

Im Unterschied zur Reflexionsmessung entstehen bei der Transmissionsmessung keine schnellen Abtastschwingungen h, , sondern nur Ausdrücke der Form h_ .

- 26 -

<u>Bild 10</u>: Schaltung zur Oberflächenabtastung eines Kreishohlleiters mit quadratischem Detektor

Bild 11: Phasenempfindliche Oberflächenabtastung

c) Die H₀₁-Welle mit schwacher Wellentypumwandlung

In der Hohlkabeltechnik treten meistens Meßobjekte auf, in denen die H₀₁-Welle nur eine geringe Wellentypumwandlung erfährt. Bei der Oberflächenabtastung des Wellentypgemischs im Zuführungshohlleiter erscheinen daher die zu- und ablaufenden Wellengrößen der H₀₁-Welle mit großer Amplitude und ablaufende Wellengrößen mit geringer Amplitude. Am Detektor erscheint, wenn $\mu = 0$ der Index der H₀₁-Welle ist:

$$\underline{b}_{ges} = \underline{k} \, \underline{a}_{0} \left[c_{zo} \left(1 + \underline{5}_{oo} \, e^{-j \, 2 \beta_{o} (l - z)} \right) \right]$$

+
$$\sum_{\psi=1}^{n} C_{z\psi} \left\{ \sum_{\psi=0}^{(1)} \cos m_{\psi} \psi + \sum_{\psi=0}^{(2)} \sin m_{\psi} \psi \right\} e^{-j(\beta_{0} + \beta_{\psi})(\ell - z)}$$

(16)

Am Ausgang des quadratischen Gleichrichters ergibt sich nach kurzer Zwischenrechnung:

$$h = M \left[c_{zo}^{2} \left(1 + |S_{00}|^{2} + 2|S_{00}|\cos\left[2\beta_{0}(\ell - z) - g_{00} \right] \right) + 2c_{zo} \sum_{\gamma=1}^{n} c_{z\gamma} \left(|S_{\gamma 0}^{(1)}| Y_{\gamma 0}^{(1)} \cos m_{\gamma} \gamma + |S_{\gamma 0}^{(2)}| Y_{\gamma 0}^{(2)} \sin m_{\gamma} \gamma \right) \right]$$

$$(17)$$

$$Y_{\nu o}^{(k)} = \cos \left[(\beta_{o} + \beta_{\tau}) (l - \bar{z}) - g_{\nu o}^{(k)} \right]$$

$$+ \left| \underline{S}_{o o} \right| \cos \left[(\beta_{o} - \beta_{\tau}) (l - \bar{z}) - g_{o o} + g_{\nu o}^{(k)} \right]$$
(18)

Die Linearisierung der Wellentypanalyse wird trotz quadratischer Gleichrichtung in Gleichung (17) dadurch erreicht, daß die aus den Störwellentypen gebildeten quadratischen Glieder vernachlässigbar sind und die H₀₁-Welle keine azimutale Abhängigkeit aufweist.

Eine gleichmäßig rotierende Sonde liefert einen periodischen Meßwert, dessen rotationsharmonische Bestandteile ausgefiltert und winkelabhängig gleichgerichtet werden müssen, damit die Polarisationsrichtungen getrennt werden können. Die rotationsharmonischen Bestandteile sind wellentypselektiv und eindeutig, solange man sich bei der Messung auf Frequenzen und Querschnitte beschränkt, in denen die ersten sechs Wellentypen ausbreitungsfähig sind.

Die kontinuierliche Längsverschiebung der rotierenden Sonde ist jedoch wegen der Längenabhängigkeit von $\gamma_{40}^{(k)}$ ebenso notwendig wie bei der Meßleitung im Einwellentypleiter. <u>S₀₀</u> läßt sich aus dem Verlauf des Mittelwertes bei der Rotation in Abhängigkeit von z bestimmen, z.B. mit der Knotenbreitenmessung.

Das Schaltbild zu diesem Verfahren unterscheidet sich von Bild 10 dadurch, daß anstelle des Fourieranalysators ein Lock-In-Verstärker eingebaut wird. Der Steuerkanal des Verstärkers wird entsprechend der Winkelstellung des Analysators mit Impulsen gespeist.

d) Phasenempfindliche Oberflächenabtastung

Die phasenempfindliche Oberflächenabtastung bezweckt eine zum Real- oder Imaginärteil des Oberflächenfeldes proportionale Detektorausgangsspannung. Diese lautet nach Gleichung (11) für $\psi_{\mu} = \psi_{\nu}$ und Speisung mit nur einem Wellentyp μ :

$$h = M_1 \mathcal{R}_n \left\{ \underline{b} ges \right\}$$
(19)

$$= M_{2} \left(C_{z\mu} \cos m_{\mu} \psi + \sum_{4=1}^{n} C_{z4} \left\{ \frac{|S_{\mu\nu}^{(41)}| \cos m_{\nu} \psi \cos \left[(\beta_{\nu} + \beta_{\mu}) (l-z) - \varphi_{\mu\nu}^{(41)} \right] + |S_{\mu\nu}^{(21)}| \sin m_{\nu} \psi \cos \left[(\beta_{\nu} + \beta_{\mu}) (l-z) - \varphi_{\mu\nu}^{(21)} \right] \right\} \right)$$

Gleichung (19) stellt die lineare Superposition der einzelnen rotations- und längenharmonischen Spektralanteile dar und kann daher bequem durch Fourieranalyse zerlegt werden.

Die praktische Durchführung des Verfahrens stößt auf erhebliche Schwierigkeiten, da die phasenempfindliche Gleichrichtung nur durch Zufuhr einer weiteren Mikrowellenleistung zum Detektor möglich ist. Dieses könnte mit der Schaltung nach Bild 11 oder durch eine direkte Umwegleitung vom Sender zum Detektor erfolgen. Die Zuleitung müßte flexibel sein und gleichzeitig überall eine konstante Ausgangsphase liefern, sodaß das Verfahren nur für verhältnismäßig niedrige Frequenzen in Frage kommt.

3.1.4 Die allgemeine Zuleitung

An Meßobjektzuleitungen mit komplizierteren Querschnittskonturen können häufig keine beweglichen Meßsonden angebracht werden. Zur Wellentypanalyse in einem so gestalteten Mehrwellentypleiter müssen feste Sonden zur Messung der schnellen Abtastschwingungen oder zur phasenempfindlichen Oberflächenabtastung eingesetzt werden. Die Auswertung dieser Messungen setzt voraus, daß die Abtastkoeffizienten aus den Strukturfunktionen der Wellentypen berechnet werden können und daß die Phasenkonstanten bekannt sind. Die Feldverläufe senkrecht zur Ausbreitungsrichtung sind nun durch einzelne Oberflächenpunkte bestimmt. Aus ihnen können die Feldverläufe durch diskrete Fouriertransformation bzw. Lösung linearer Gleichungssysteme rekonstruiert werden.

- 31 -

3.2 Reflexionsmessung mit Verzweigungsschaltungen

Bei der Reflexionsmessung mit einer Verzweigungsschaltung wird ein Teil der vom Sender kommenden Leistung abgezweigt und mit einem Teil der vom Meßobjekt reflektierten Leistung verglichen. Die abgezweigten Wellen werden zwei getrennten Detektoren zugeführt oder in einem oder mehreren Detektoren überlagert. Die Verzweigungsschaltungen werden im allgemeinen in Einwellentypzuleitungen eingebaut. Sie enthalten beispielsweise die T-Verzweigung, das Magische T und den Richtkoppler. Durch Einführung wellentypselektiver Richtkoppler lassen sich die Schaltungen aber auch für die Mehrwellentypzuleitung abwendeln.

Bild 12 zeigt die grundsätzlichen Schaltungstypen. In den Anordnungen a und c wird unter Verlust der Phase des Reflexionsfaktors der Quotient zweier Detektorspannungen gebildet, oder Phase und Amplitude des Reflexionsfaktors werden durch Überlagerungsempfang in

<u>Bild 12</u> : Verzweigungsschaltungen zur Reflexionsmessung

- a: Reflektometer; b: Eintaktsynchrondetektor
- c: Vergleich mit Kurzschluß (Z-g-Diagraph)
- d: Brückenschaltung ; e: Gegentaktsynchrondetektor

der Zwischenfrequenzstufe gemessen. In c ist ausserdem die Frequenzabhängigkeit der Zuleitung zum Meßobjekt kompensiert.

Bei den anderen Schaltungen werden in den Detektoren die vor- und rücklaufenden Wellen überlagert. Die Typen b und d sind eigentlich zur punktweisen Messung von Reflexionsfaktoren erdacht worden. Den Reflexionsfaktorbetrag gewinnt man durch Summen- und Differenzbildung der zu- und ablaufenden Wellen oder durch Brückennullabgleich, während man die Reflexionsfaktorphase von dem Vergleich mit einem Kurzschluß in der Eingangsbezugsebene des Meßobjekts ableitet.

Die Schaltungen a und c ermöglichen die kontinuierliche Messung eines variierenden Reflexionsfaktors nach Betrag und Phase, wenn eine phasenempfindliche Zwischenfrequenzgleichrichtung vorgesehen ist. Die Anordnungen b, d und e hingegen lassen sich für die Aufnahme von Realund Imaginärteil des Reflexionsfaktors verwenden. Die Detektoren werden dann als Mischer für die hin- und rücklaufenden Wellen aufgefaßt. Die Schaltungen eignen eich dann besonders zur schnellen Reflexionsmessung an periodisch variierenden Meßobjekten.

Der Welligkeitsindikator nach Bild 12b wird durch das Signalflußdiagramm Bild 13 beschrieben. Die Ausgangs-

Bild 13: Signalflußdiagramm des Welligkeitsindikators

Bild 14 : Signalflußdiagramm der Brückenschaltung

35

spannung eines angepaßten quadratischen Detektors lautet:

$$h = M \left| 1 - \frac{1}{2} \frac{\beta L}{e} \right|^{2} = M \left[1 + \left| \frac{5}{44} \right|^{2} + 2 \left| \frac{5}{44} \right| \cos(2\beta L + g_{44}) \right]$$

(20)

Die Ausgangsspannung eines quadratischen Gleichrichters in der Brückenschaltung ist nach Bild 14 :

$$h = M_{4} | S_{11} + 10^{-\frac{d}{40}} e^{-\frac{d}{40}} |^{2}$$

= $M_{2} \Big[1 + \Big| \frac{S_{11}}{2} + \Big| \frac{d}{2} + \Big| \frac{S_{11}}{2} + \Big| \frac{d}{2} + \Big| \frac{d}{2} + \Big| \frac{d}{2} \Big| \cos(2\beta L + g_{11}) \Big]$ (21)

Eine phasenempfindliche Mikrowellengleichrichtung wird in beiden Anordnungen durch Einfügung eines Dämpfungsgliedes zwischen Meßobjekt und Abzweigschaltung bewirkt. Damit wird das Betragsquadrat des Reflexionsfaktors vernachlässigbar, und der Gleichspannungsanteil kann ausgangsseitig kompensiert werden.

Bild 12e beschreibt die Messung des Realteils des Reflexionsfaktors durch Differenzbildung der Ausgangsspannungen quadratischer Detektoren im H- und E-Arm eines durch Richtkoppler gespeisten Magischen T:

$$h_{H} - h_{E} = \frac{M}{2} \left\{ \left| \underline{a}_{1} + \underline{b}_{1} \right|^{2} - \left| \underline{a}_{1} - \underline{b}_{1} \right|^{2} \right\}$$
$$= 2M \left| \underline{a}_{1} \right|^{2} \mathcal{H}_{H} \left\{ \frac{\underline{b}_{1}}{\underline{a}_{1}} \right\}$$
(22)

<u>a</u>₁ und <u>b</u>₁ bedeuten die am Meßobjekt zu- und ablaufenden Wellengrößen. Die Empfangsanordnung kann man als Gegentaktsynchronmischer bezeichnen.

Eine Variante der Schaltung c ist in [38] zur Breitbandmessung von Reflexionsfaktoren beschrieben. Anstelle der Richtkoppler sind die Detektoren über ortsfeste Sonden angeschlossen. Die Leitungslängen zu Meßobjekt und Referenzreflexion sind so bemessen, daß bei Frequenzmodulation an den Detektoren aus der Überlagerung der hin- und rücklaufenden Wellen Schwingungen gleicher Frequenz entstehen. Gemessen wird Amplituden- und Phasenänderung des Meßobjektzweiges gegen den Referenzzweig.

3.3 Resonanzmeßverfahren

3.3.1 Prinzip

Bei einer Resonanzmessung wird das Meßobjekt, dessen Streumatrix ermittelt werden soll, in ein stark frequenzabhängiges Netzwerk eingefügt. Das Netzwerk wird aus Leitungsresonatoren gebildet, die durch das Meßobjekt verstimmt, verkoppelt und bedämpft werden, so daß aus der Reflexionsfaktorfunktion die Eigenschaften des Prüflings hervorgehen. Die Wellentypen werden mittels Wellenlänge identifiziert. Resonanzmeßverfahren gestatten die Bestimmung der vollständigen Streumatrix auch bei verlustbehafteten oder sehr kleinen Matrixelementen. Ihre Anwendung wächst mit steigender Frequenz.

Mit den bisher beschriebenen Verfahren können nur die Eigenreflexionsfaktoren der eingespeisten Wellentypen und ihre Umwandlung in andere Typen gemessen werden. weil vorausgesetzt wurde, daß der Generator die im Meßobjekt angeregten Wellen reflexionsfrei absorbiert. Im Resonanzmeßverfahren dient aber das Meßobjekt selbst als Quelle für die anderen Typen. Diese werden von absichtlich in die Zuführungsleitungen eingefügten Reflexionsstellen (Blenden) zum Meßobjekt zurückgesendet, und es bilden sich die gewünschten Leitungsresonatoren. Die Verkopplung der nichteingespeisten Wellentypen untereinander beeinflußt zwar grundsätzlich das Resonanzverhalten, führt aber selten auf deutlich nachweisbare Effekte. Die Eigenreflexionsfaktoren der angeregten Wellentypen am Meßobjekt bewirken dagegen merkliche Resonanzerscheinungen.

Bild 15 zeigt im Blockschaltbild die wichtigsten Resonanzverfahren zur Reflexionsmessung. Der Resonator wird mit einem definierten Wellentyp gespeist, dessen Umwandlung zu untersuchen ist. In a und b wird der

Bild 15 : Resonanzverfahren

- a Messung von Ru{ 1}
- b Messung von 111
- c Mantelabtastung
- d Endplattenabtastung (Schlitzlose Meßleitung)

Realteil bzw. der Betrag des Reflexionsfaktors mit Verzweigungsschaltungen gemessen. c und d stellen Durchgangsresonatoren mit Oberflächenabtastung am Wellenleitermantel oder an der Resonatorendplatte dar. Typ d nennt man im Einwellentypleiterbetrieb auch schlitzlose Meßleitung. Bei Mehrwellentypleitern kann eine Endplattenanalyse durch Messung der magnetischen Oberflächenfeldstärke oder durch Abtastung der rechts- und linkszirkularpolarisierten magnetischen Oberflächenfeldstärken vorgenommen werden. Einige Meßkurven der in [40] . [41] und [42] beschriebenen Verfahren zeigen die Bilder 16 und 17 . Sie entstehen durch die Überlagerung der Kreishchlleiterwellentypen H₀₁, H₂₁ und H₃₁ bei der Frequenz 11,8 GHz im Rohr von 38 mm Durchmesser.

Das grundsätzliche Signalflußdiagramm für alle Meßaufbauten nach Bild 15 ist in Bild 18 wiedergegeben. Im Falle der Reflexionsmessung wird $\frac{b_0}{a_0}$ ermittelt und bei der Abtastanalyse $\frac{b_3es}{a_0}$.

3.3.2 Der Reflexionsresonator niedriger Güte

Wenn am Meßobjekt stärkere Verluste des eingespeisten Wellentyps auftreten, entsteht ein Resonator niedriger

40 -

<u>Bild 16</u>: Messung der Radialkomponente Hr der magnetischen Oberflächenfeldstärke an der Kurzschlußplatte eines Kreishohlleiters mit quadratischem Detektor. Wellentypen: Hon; H21, H31 Parameter: Konstanter Radius[mm]

Bild 17 : Messung der rechts- und linkszir kularpolarisierten Feldstärken H, und H_ an der Kurzschluβplatte eines Kreishohlleiters mit quadratischem Detektor. Wellentypen : Ho1, H21, H31 Parameter : Konstanter Radius[mm]

<u>Bild 18</u>: Signalflußdiagramm der Resonanzmeßverfahren .

Güte. Die einzelnen Wellentypen bilden keine ausgeprägten Einzelresonanzen, sondern überlagern sich und mischen sich im quadratischen Detektor zu einer schwer auswertbaren Funktion. Mißt man aber nach Bild 15a den Realteil des Reflexionsfaktors mit der Zweisondenmeßleitung oder mit dem Gegentaktsynchrondetektor in Abhängigkeit von der Frequenz oder der Resonatorlänge, dann kann man eine Fouriertransformation der gemessenen Kurve durchführen und aus den Spektralanteilen die Streumatrixelemente bestimmen.

Aus dem Signalflußdiagramm Bild 18 erhält man bei Vernachlässigung aller $S_{\mu\nu}^{k}$ mit $\mu \neq \nu$ und k > 3 für den Reflexionsfaktor:

$$t = \frac{b_0}{a_0} \approx \frac{\Gamma_{00}}{\Gamma_{00}} + \frac{\Gamma_{01}}{\Gamma_{01}} \frac{S_{11}}{S_{11}} e^{-\frac{i}{2} \beta_1 l}}{1 - \frac{\Gamma_{11}}{\Gamma_{11}} \frac{S_{11}}{S_{11}} e^{-\frac{i}{2} \beta_1 l}}$$

$$-\sum_{\gamma=2}^{n} \frac{\Gamma_{01}^{2} S_{1\gamma}^{2} e^{-j^{2}(\beta_{1}+\beta_{1})l}}{(1-\Gamma_{11} S_{11} e^{j^{2}\beta_{1}l})(1-\Gamma_{1\gamma} S_{1\gamma} e^{-j^{2}\beta_{1}l})}$$

+ $\sum_{N=2}^{n} \sum_{\mu=N+1}^{n-1} \frac{2\Gamma_{01}^{2} S_{1N} S_{1\mu} S_{\mu\mu} e^{j2(\beta_{1}+\beta_{N}+\beta_{\mu})\ell}}{(1-\Gamma_{1n} S_{1n} e^{j2\beta_{n}\ell})(1-\Gamma_{1n} S_{1n} e^{j2\beta_{n}\ell})(1-\Gamma_{1n} S_{1n} e^{j2\beta_{n}\ell})}$

(23)

Die Entwicklung in Längenharmonische ergibt:

$$\mathbf{T} = \Gamma_{00} + \Gamma_{04}^{2} \left\{ \sum_{n_{q}=1}^{2} S_{11} (\Gamma_{14} S_{14})^{n_{q}-1} e^{j2n_{q}\beta_{1}\ell} \right\}$$

$$-\sum_{\mu=1}^{n} \frac{\sum_{n=1}^{2} -i^{2}(\beta_{n} + \beta_{\mu})l}{\sum_{n=1}^{n} e^{-i^{2}(\beta_{n} + \beta_{\mu})l}}$$

+
$$\sum_{N=1}^{n} \sum_{\mu=N+1}^{n-1} 2 \sum_{n} \sum_{\nu \neq n} \sum_{\nu \neq \mu} \sum_{\nu \neq \mu} e^{-i 2 (\beta_{1} + \beta_{1} + \beta_{\mu}) l}$$

+ Roo(l)

(24)

 $\underline{\mathbf{R}}_{00}(1)$ enthält alle Spektralanteile, die zur Ermittlung der Streumatrixelemente überflüssig sind. Die Spektralanalyse der Kurve <u>r</u> = f₀(1) ergibt:

- $\Gamma_{00} = \text{Mittelwert}$ $\Gamma_{01}^{2} S_{11} = \text{Koeffizient der ersten Harmonischen}$ des eingespeisten Wellentyps 1, $\text{also von } 2\beta_{4}\ell$ $\Gamma_{01}^{2} \Gamma_{11} S_{11}^{2} = \text{Koeffizient der zweiten Harmonischer}$
 - = Koeffizient der zweiten Harmonischen des eingespeisten Wellentyps 1, also von 4β1ℓ
- $-\Gamma_{01}^{2} S_{11}^{2} = \text{Koeffizient der Mischharmonischen der}$ beiden Wellentypen 1 und \mathcal{V} , also von $\mathcal{2}(\beta_{1} + \beta_{11})\ell$.

 $2 S_{14} S_{14} S_{14} S_{14} S_{16}$ Koeffizient der Mischharmonischen der drei Wellentypen 1, μ und ν ,

- 46 -

also von $2(\beta_1 + \beta_1 + \beta_2)l$.

Die Methode gestattet also die vollständige Bestimmung der Reflexionsstreumatrix. Der Nachteil des Verfahrens besteht aber darin, daß der Kopplungsfaktor zwischen zwei nichteingespeisten Typen nur aus einem Spektralanteil zu gewinnen ist, der das Produkt von drei kleinen Größen darstellt. Ausserdem bleibt die Polarisationsrichtung unbekannt.

3.3.3 Der Reflexionsresonator hoher Güte

Bei grossem Eigenreflexionsfaktor und geringer Wellentypumwandlung des eingespeisten Wellentyps am Meßobjekt muß mit einem Resonator hoher Güte gearbeitet werden.

In der Schaltung nach Bild 15b wird das Betragsquadrat des Eingangsreflexionsfaktors im speisenden Einwellentypleiter gemessen. Beim Resonator hoher Güte ist die Mischung der Resonanzen der verschiedenen Wellentypen im quadratischen Videodetektor nicht so gefährlich, da die Einzelresonanzen meistens getrennt auftreten. Für den Reflexionsresonator hoher Güte wird in A3 der
Reflexionsfaktor hergeleitet. Dabei werden alle Glieder mit S^k_{µµ} mit k > 2 und µ ≠ ν vernachlässigt, da die
Verkopplung der Wellentypen im Meßobjekt sehr klein ist.
Mit dieser Voraussetzung ist es möglich, die Polstellen
der Reflexionsfaktorfunktion zu ermitteln und eine Partialbruchzerlegung vorzunehmen.

Für n Wellentypen ergibt sich damit folgende Reihenderstellung der Reflexionsfaktorfunktion:

$$\mathbf{t} = \Gamma_{00} + \sum_{4=1}^{n} \frac{Z_{4}^{-4} \Gamma_{04}^{2} S_{44} \left\{ \frac{R}{R_{4}(n, \mathbb{Z}_{4})} + \sum_{\tau=2}^{n} \frac{R}{2} \frac{Z_{4}^{-4} R_{\tau}(n, \mathbb{Z}_{4})}{(\mathbb{Z} - \mathbb{Z}_{4}) \mathbb{Z}_{4}^{-n}} \prod_{\lambda=4}^{n} (\mathbb{Z}_{4} - \mathbb{Z}_{\lambda}) \right\}}$$

$$(25)$$

Darin bedeuten:

$$\overline{z} = e^{\int z p_{A} z}$$

$$\overline{z} = e^{\int z p_{A} z}$$

$$\overline{z}_{v} = \int v \left\{ 1 + \sum_{\substack{\mu=1 \\ \mu=1 \\ \mu\neq\nu}}^{n} \frac{g_{\mu} k_{\mu\nu}}{g_{v} - g_{\mu}} \right\}$$

Polstelle Z.

- 47 -

Weiterhin bedeuten:

$$g_{*} = \Gamma_{**} \sum_{**} e^{-j^2 (\beta_* - \beta_*) \ell}$$
; $g_{*} = \Gamma_{**} \sum_{**} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{**} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{**} \sum_{*} e^{-j^2 (\beta_* - \beta_*) \ell}$; $g_{**} = \Gamma_{*} \sum_{*} e^{-j^$

$$\frac{k_{\mu\nu}^{2}}{k_{\mu\nu}} = \frac{\frac{S_{\mu\nu}}{S_{\mu\nu}}}{\frac{S_{\mu\mu}}{S_{\mu\nu}}}$$

$$\underline{R}_{4}(n,\underline{z}) = \underline{z} \prod_{\psi=2}^{-(n-1)} \left[\underline{z} - g_{\psi} \left\{ 1 + \sum_{\mu=2}^{n} \frac{g_{\mu} k_{\mu\nu}}{g_{\psi} - g_{\mu}} \right\} \right]_{\mu \neq \psi}$$

$$\frac{\mathcal{R}_{\tau}(n, \underline{z})}{\mathcal{R}_{\tau}(n, \underline{z})} = \underline{z} \prod_{\substack{\nu=2\\ \nu \neq \tau}}^{n} \left[\underline{z} - \frac{g_{\nu}}{g_{\nu}} \left\{ 1 + \sum_{\substack{\mu=2\\ \mu \neq \tau}}^{n} \frac{g_{\mu} \underline{k}_{\mu\nu}}{g_{\nu} - g_{\mu}} \right\} \right]$$

Falls im Meßobjekt nur zwei Wellentypen verkoppelt sind, nimmt Gleichung (25) eine übersichtliche Gestalt an:

$$\mathbf{I} = \left[\int_{00}^{2} + \int_{01}^{2} \int_{11}^{2} \frac{1}{\mathbf{z}^{-1}} \right] \frac{1}{1 - \mathbf{z}^{-1} g_{1} \left(1 + \frac{\mathbf{k}_{12}^{2} g_{2}}{g_{1} - g_{2}} \right)}$$
(26)

$$-\frac{k_{12}^{2}}{(g_{1}-g_{2})^{2}}\left\{\frac{1}{1-\frac{z}{g_{1}}g_{1}\left(1+\frac{k_{12}^{2}}{g_{1}-g_{2}}\right)}-\frac{1}{1-\frac{z}{g_{2}}g_{2}\left(1+\frac{k_{12}^{2}}{g_{1}-g_{1}}\right)}\right\}$$

Das zweite und dritte Glied stellt die Resonanz des Wellentyps 1 dar, die bei Änderung der Betriebsfrequenz oder der Resonatorlänge mit der Wellenlänge des Typs 1 periodisch wiederkehrt. Die durch das vierte Glied dargestellte Resonanz des angekoppelten Wellentyps 2 erscheint mit der Wellenlänge des Typs 2 periodisch. fällt also meistens in die Lücke zwischen zwei Resonanzen des Typs 1. Das dritte und vierte Glied in Gleichung (26) sind aber klein im Vergleich zum zweiten Glied und bleiben auch bei gleichzeitiger Resonanz beider Wellentypen vernachlässigbar. Eine wesentliche Änderung des Reflexionsfaktors tritt nur dann ein, wenn eine gleichzeitige Resonanz beider Typen die Polstelle des Typs 1 beeinflußt. In der Nähe der gleichzeitigen Resonanz ergibt sich eine Bandbreitenerhöhung und eine Amplitudenverminderung der Resonanzfunktion. Beide Vorgänge können dazu benutzt werden, um die Wellentypverkopplung quantitativ zu ermitteln. Damit wird das Resonanzverhalten im wesentlichen durch das erste Glied der Reihe in Gleichung (25) charakterisiert:

$$\underline{T} = \underline{\Gamma}_{00} + \frac{\underline{\Gamma}_{01}^{2} \underline{S}_{11}}{\underline{E} \left[1 - \underline{z}^{-1} \underline{S}_{1} \left(1 + \sum_{\psi=2}^{n} \frac{\underline{k}_{1\psi}^{2} \underline{S}_{\psi}}{\underline{S}_{1} - \underline{S}_{1\psi}} \right) \right]}$$

(27)

 $= \int_{00}^{2} + \frac{\int_{01}^{2} S_{11}}{\overline{z} - \overline{z}_{1}} = \int_{00}^{2} + \overline{f}(\overline{z})$

49

Die Bandbreitenerhöhungen und Einbrüche der Resonanzmaxima treten nun entsprechend der Schwebungswellenlänge der angeregten Typen mit dem Haupttyp periodisch auf, wenn Frequenz oder Resonatorlänge gleichmäßig geändert werden. Da die Typen verschiedene Schwebungswellenlängen haben, ist es schwierig, die verschiedenen Wellentypen in den Meßkurven ohne Fouriertransformation zu identifizieren.

Nach Gleichung (27) kann die Bandbreiten- oder Resonanzamplitudenänderung in Abhängigkeit von der Resonatorlänge oder Betriebsfrequenz zur Bestimmung der Kopplungsfaktoren und Identifizierung der Wellentypen benutzt werden.

In A3 wird die Fourierreihendarstellung der Einhüllenden der Resonanzkurven für verlustlose Kopplung hergeleitet:

$$|\underline{T}|_{max} = g_{0} + \sum_{\mu=2}^{n} \sum_{\mu=4}^{\infty} g_{\mu\nu} e^{-\frac{i}{\mu} 2\Delta \beta_{\nu} \ell}$$
(28)

$$g_{\mu\nu} = - \frac{|\Gamma_{01}|^2 |S_{11}|}{1 - |g_1|} \frac{|\underline{k}_{1\nu}^2||g_{\nu}|}{1 - |g_1|} \left(\frac{|g_{\nu}|}{|g_1|}\right)^{\mu - 1}$$
(29)

- 50 -

Die Einhüllende ist hier erklärt durch n - 1 verschiedene raumharmonische Reihen, die zu n verschiedenen Wellentypen gehören. Die Reihe des Wellentyps \checkmark hat unendlich viele Glieder, deren Perioden das η_{μ} -fache der halben Schwebungswellenlänge mit dem eingespeisten Wellentyp betragen. Die Perioden der verschiedenen Wellentypen haben kein ganzzahliges Verhältnis zueinander. Deshalb ist eine Trennung und Identifizierung der Typen, abgesehen von Wellenlängenentartungen, möglich.

Die praktische Bestimmung von $\left|\frac{k^2}{1\eta}\right|$ muß in drei Schritten erfolgen:

 Wenn der eingespeiste Wellentyp allein in Resonanz ist, entspricht

$$\frac{|\underline{\Gamma}_{01}|^2 |\underline{S}_{11}|}{1 - |\underline{S}_{1}|}$$

dem Resonanzeinbruch des Reflexionsfaktorbetrages und kann unmittelbar aus $\left|\frac{T}{max}\right| = f(1)$ abgelesen werden.

- 2. Aus der Bandbreite $\delta_{10} = 2(1 |g_1|)$ derselben Resonanz erhält man $|g_1|$
- 3. Die Fourieranalyse der Einhüllenden ergibt $|g_{\gamma}|$ und $|\underline{k}_{1\gamma}^2|$

Ebenso kann auch der Bandbreiteverlauf der Resonanz des eingespeisten Wellentyps in Fourierreihen entwickelt werden:

(30)

(31)

$$d_{1} = d_{0} + \sum_{\mu=2}^{n} \sum_{\mu=1}^{\infty} d_{\mu\nu} e^{-i \mu 2 \Delta \beta_{\mu} \ell}$$

$$d_{\mu\nu} = 2 k_{1+}^{2} |g_{\nu}| \left(\frac{|g_{\nu}|}{|g_{1}|}\right)^{\mu-1}$$

Trotz der einfachen Auswertungsformel gestaltet sich die Messung umständlicher, weil die Bandbreitefunktion schwerer aufzunehmen ist. Seine Anwendung findet das Verfahren für Messungen an Resonatoren konstanter Länge. Hier wird die Bandbreite \mathcal{I}_1 in einem großen Frequenzbereich gemessen, in dem Leistungsschwankungen des Senders auftreten und die Empfangsdiode wiederholt abgestimmt werden muß.

3.3.4 Der abgetastete Resonator hoher Güte

Wenn die Polarisationsrichtung der vom Meßobjekt angeregten Wellentypen festgestellt oder Wellentypen mit gleicher Wellenlänge getrennt werden sollen, so kann die Oberfläche des Resonatorraums abgetastet werden. Hierzu bieten sich beispielsweise die Schaltungen nach Bild 15c und Bild 15d an. Entweder wird der gewünschte Wellentyp über eine Viellochkoppelblende oder einen wellentypselektiven Richtkoppler eingespeist. Das Verfahren nach Bild 15d hat den Vorteil, daß es auch bei höchsten Frequenzen und weiten Hohlleiterquerschnitten verwendbar ist. Die Methode Bild 15d setzt aber wellentypselektive Richtkoppler voraus.

In A 4 wird der Übertragungsfaktor aus dem Signalflußdiagramm Bild 18 für Zylindermantelabtastung und Endplattenspeisung abgeleitet unter der Voraussetzung, daß bei kleiner Wellentypumwandlung im Meßobjekt alle Glieder mit $\underline{S}_{\mu\nu}^{k}$ und k > 2 vernachlässigt werden können. Die Umwandlungsfaktoren $\underline{S}_{\mu\nu}$ müssen aber groß genug sein, um bei gleichzeitiger Resonanz zweier Wellentypen am Detektor eine Anzeige des erzeugten Typs hervorzurufen. Der Transmissionsfaktor bei Zylindermantelabtastung der H_z -Komponente lautet:

$$\underline{I}(n,\underline{z}) = \frac{\underline{b}_{ges}}{\underline{a}_{o}} = \underline{\Gamma}_{o1} \underline{z} \sum_{\nu=1}^{n} \left[\frac{\underline{z}_{\nu}^{-4} C_{1} e^{j\beta_{1} \overline{z}} (1 + \underline{S}_{11} e^{-j2\beta_{1}(\ell-z)}) \underline{R}_{1}(n,\underline{z}_{\nu})}{(\underline{z} - \underline{z}_{\nu}) \underline{z}_{\nu}^{-n} \prod_{\lambda=1}^{n} (\underline{z}_{\nu} - \underline{z}_{\lambda})} \right]_{\lambda=1}^{n} (\underline{z}_{\nu} - \underline{z}_{\lambda})$$

and a state of the

Parts Standard Co.

$$+ \sum_{G=2}^{n} \frac{\underline{k}_{1G}^{2} g_{G} \overline{z}_{*}^{-2} c_{1} \sum_{11}^{0} e^{-i\beta_{1}(\ell-z)} R_{G}(n, \overline{z}_{*})}{(\overline{z}-\overline{z}_{*}) \overline{z}_{*} \prod_{\lambda=1}^{n} (\overline{z}_{*}-\overline{z}_{\lambda})} \sum_{\lambda=1}^{n} (\overline{z}_{*}-\overline{z}_{\lambda}) \sum_{\lambda=1}^{\lambda=1} (\overline{z}_{*}-\overline{z}_{\lambda})$$

$$+\sum_{\tau=2}^{n} \frac{\underline{K}_{1\tau} \underline{z}_{v}^{-1} c_{\tau} \underline{R}_{\tau}(n, \underline{z}_{v})}{(\underline{z} - \underline{z}_{v}) \underline{z}_{v} \prod_{\lambda=1}^{-n} \prod_{\lambda=1}^{n} (\underline{z}_{v} - \underline{z}_{\lambda})}$$

(32)

Ist eine Abspaltung des eingespeisten Wellentyps durch Analyse der Rotationsharmonischen möglich, so kann das erste Glied mit den in A3 benutzten Vereinfachungen lauten:

$$I_{4}(n,\underline{z}) = \underline{z} \frac{\int_{01}^{-} c_{4} e^{-j\beta_{1} \overline{z}} (1 + \sum_{11}^{+} e^{-j\beta_{1}(\ell-\overline{z})})}{\overline{z} - \overline{z}_{4}}$$
(33)

In (2n + 1) 2/4 - Abstand von der Einkoppelplatte erhält man also die maximale Detektoranzeige.

Es gilt weiterhin die Fourierreihenentwicklung der Einhüllenden der Resonanzkurven nach Gleichung (28). Für die Fourierkoeffizienten ergibt sich:

$$g_{\mu\nu} = - \frac{|\Gamma_{01}|_{C_1}|_{1+\sum_{l=1}^{l} e^{\frac{1}{2}\beta_1(l-z)}|}{1-|g_1|} \frac{|\underline{k}_{1\nu}||_{g_{\nu}|}}{1-|g_1|} \left(\frac{|g_{\nu}|}{|g_1|}\right)^{\mu-1}$$

(34)

Die Glieder der Doppelsumme in Gleichung (32) treten nur bei gleichzeitiger Resonanz des eingespeisten und eines angeregten Typs in Erscheinung. Die angeregten Typen werden also durch die hohe Resonatorgüte separiert. Die Identifizierung des Typs und die Bestimmung seiner Polarisation ist dann mit dem Rotationsanalysator möglich. Bei nur zwei Wellentypen lautet die Übertragungsfunktion unter Vernachlässigung von k² im Zähler:

$$\underline{I}(2, \underline{z}) = \underline{\Gamma}_{01} c_1 \left\{ \frac{\frac{-i\beta_1 z}{e} (1 + \frac{5}{2} + e^{-i\beta_2 \beta_1 (\ell - z)})}{1 - \underline{z}^{-1} g_1 \left(1 + \frac{k_{12}^2 g_2}{g_1 - g_2}\right)} \right\}$$
(35)

$$+\frac{\Gamma_{01}c_{2}K_{12}}{g_{1}-g_{2}}\left\{\frac{g_{1}}{1-\frac{z}{g_{1}}-g_{1}}\left(1+\frac{k_{12}^{2}g_{2}}{g_{1}-g_{2}}\right)-\frac{g_{2}}{1-\frac{z}{g_{2}}-g_{2}}\left(1+\frac{k_{12}^{2}g_{1}}{g_{2}-g_{1}}\right)\right\}$$

Das erste Glied von Gleichung (35) stellt die Durchgangsresonanz des eingespeisten Hauptwellentyps dar. Das zweite Glied beschreibt die Wirkung der Hauptresonanz auf den angekoppelten Typ, während im dritten Glied die Resonanz des angekoppelten Typs direkt abgetastet wird. Die quadratische Gleichrichtung des nach Gleichung (35) abgetasteten Feldes führt auf nur schwer auswertbare Formeln.

3.3.5 <u>Abtastung eines H₀₁-gespeisten Störwellentyp-</u> resonators

Die Umwandlung der H_{O1}-Welle am Meßobjekt kann mit einer Abwandlung des Verfahrens nach Bild 15c ausgemessen werden. Es wird nur die Einkoppelblende des Resonators entfernt. Der vom Meßobjekt reflektierte H_{01} -Wellenanteil soll vom Sender reflexionsfrei aufgenommen werden, sodaß sich auf der Zuleitung zum Meßobjekt stehende H_{01} -Wellen bilden. Der im Meßobjekt angeregte Störwellentyp wird jedoch am Wellentypwandler reflektiert, wodurch ein Störwellentypresonator hoher Güte entsteht. Es kann eine phasenabhängige Oberflächenabtastung durchgeführt werden, bei der die H_{01} -Welle die Funktion des Überlagereroszillators übernimmt. Mit $\int_{44} = 0$ ist die Übertragungsfunktion bei zwei Wellentypen nach Gleichung (35) :

 $\underline{T}(2, z) = \int_{O1} e^{-\frac{i}{3}\beta_{1}z} \left[c_{1}(1 + \frac{5}{11}e^{-\frac{i}{3}2\beta_{1}(l-z)}) + \frac{c_{2}\underline{K}_{12}e^{\frac{i}{3}\beta_{1}z}}{1 - z^{-1}o_{1}} \right]$ (36)

Es ist günstig, die Abtastkoordinate an den Anfang des Störwellentypresonators so zu legen, daß H₀₁-Welle und Störwelle an dieser Stelle ein Maximum besitzen. Dieses wird erreicht, wenn eine ganze Zahl vom halben Schwebungswellenlängen zwischen H₀₁-Welle und Störtyp in den Resonator paßt. Dann gilt:

$$Z = \frac{\lambda_4}{4} \approx \frac{\lambda_2}{4} ; \quad l \approx q \frac{\lambda_4}{2} ; \quad q = 1, 2, 3 \cdots$$

Weiterhin soll sich der angekoppelte Typ in unmittelbarer Nähe der Resonanz befinden:

$$2\beta_{2}l = S(2\beta_{2}l) << \frac{\pi}{2}$$

- 57 -

 $\delta(2\beta_{3}l)$ ist eine kleine Abweichung von der Resonanz. Die Endplatten des Störwellentypresonators reflektieren Haupt- und Störwellentyp stark und die Umwandlung am Meßobjekt erfolgt mit einem Phasensprung von 180°:

$$\underline{S}_{44} \approx \underline{\Gamma}_{22} \approx \underline{S}_{22} \approx -1$$
 ; $\underline{S}_{12} = -|\underline{S}_{12}|$

Dann erhält man aus Gleichung (36) bei H_z-Abtastung als Anzeige eines quadratischen Detektors:

$$h = h_{o} \left[1 + 2 \frac{C_{z}[mn] \cos m\psi}{C_{z}[o1]} | S_{12} | A_{[mn]} \right]$$
(37)

$$A_{[mn]} = Rm \left\{ \frac{\frac{|I_{22}||S_{22}| \sin d(2\beta_2 \ell)}{1 - |I_{22}||S_{22}| \cos d(2\beta_2 \ell)}}{\sqrt{1 + |I_{22}|^2 |S_{22}|^2 - 2|I_{22}||S_{22}| \cos d(2\beta_2 \ell)}} \right\}$$

Der quadratische Anteil des angekoppelten Typs ist in Gleichung (37) vernachlässigt. Die Messung kann in folgenden Schritten durchgeführt werden:

- Bestimmung von h₀ als rotationsharmonischer Gleichanteil.
- 2. Der zur azimutalen Laufzahl m gehörende rotationsharmonische Spektralanteil h [mn] wird bei Resonanz gemessen. Bei Resonanz des Störtyps ergibt sich:

$$h_{[mn]R} = 2 h_0 \frac{C_{Z[mn]}}{C_{Z[01]}} \frac{|S_{12}|}{1 - |\Gamma_{22}||S_{22}|}$$

3. Da an den Halbwertsbreitenpunkten

$\delta(2\beta_2\ell) = \delta_{\mu} \approx 1 - |\underline{\Gamma}_{22}||\underline{S}_{22}|$

der Spektralanteil h [mn] auf die Hälfte des Resonanzwerts h [mn]R gesunken ist, wird zwischen diesen Punkten die Halbwertsbreite $2 \int_{\mathcal{H}}$ gemessen. Damit ist die Störwellentypanregung aus der Halbwertsbreite und dem Spektralanteil bei Resonanz berechenbar:

$$|S_{12}| = \frac{h_{[mn]R}}{2h_1} \cdot \frac{c_{z[01]}}{c_{z[mn]}} \delta_H$$
 (38)

4. Reflexionsmessungen an Wellenleiterverzweigungen

Eine Wellenleiterverzweigung ist jedes Bauteil, das mehr als eine Zuleitung besitzt. Jede Zuleitung kann mehrere Wellentypen transportieren. Die Reflexionsmessung in einem Wellenleiter 1 der Verzweigung beruht immer darauf, daß Teile der in andere Wellenleiter transportierten Energie, von geeigneten Abschlüssen reflektiert, zum Wellenleiter 1 zurückkehren. In derartigen Meßschaltungen stellt die Wellenleiterverzweigung das Bindeglied zwischen verschiedenen Mehrwellentypresonatoren dar. Voraussetzung zur Bestimmung aller Streumatrixelemente der Verzweigung mittels Reflexionsmessung ist die Reziprozität und nicht zu hohe Transmissionsdämpfung.

. 60 .

Da die Verzweigung durch eine Vielzahl von Streumatrixelementen beschrieben wird, muß die Reflexion als kontinuierliche Funktion der Belastungsvariation gemessen werden. Die kontinuierliche Belastungsänderung erhält man bei gleichmäßig bewegtem Gleitsumpf oder Kurzschlußschieber und bei festem Kurzschluß am Ende einer längeren Leitung in Verbindung mit Frequenzvariation.

Verzweigungen mit k Wellenleiterzuführungen, in denen insgesamt n Wellentypen ausbreitungsfähig sind, werden nach [1] als (k,n)-Tore bezeichnet.

4.1 (2,n)-Tore

Oft müssen Bauelemente mit nur zwei Wellenleiterzuführungen ausgemessen werden. Es sind dieses beispielsweise Krümmer, Filter, Wellentypwandler und Querschnittsübergänge. Bild 19 zeigt das Schema der Messung. Mit Oberflächenabtastung, Verzweigungsschaltungen oder Resonanzmeßverfahren wird die Reflexionsstreumatrix des Meßobjekts in Abhängigkeit von der Stellung eines Kurzschlußschiebers ermittelt. Bei einem gleichmäßig bewegten Schieber sind die Elemente S

Bild 19 : Reflexions messung am (2,n)-Tor

<u>Bild 20</u> : Signalflußdiagramm der Reflexionsmessung am (2,n)-Tor der Reflexionsstreumatrix Funktionen der Schieberstellung 1₂ und damit der Zeit.

Aus dem Vergleich der Bilder 20 und 21 läßt sich unter Vernachlässigung aller \underline{S}_{pq}^{k} mit k > 2 herleiten:

$$\frac{5}{\mu \mu} = \frac{5}{\mu \mu} - \sum_{q=2}^{m} \frac{\frac{5^{2} \mu q}{1 + \frac{5}{2} q q} e^{-\frac{1}{2}\beta_{q} \ell_{2}}}{1 + \frac{5}{2} q q} e^{-\frac{1}{2}\beta_{q} \ell_{2}}}$$

$$+\sum_{q=2}^{m-2}\sum_{p=q+2}^{m}\frac{2\sum_{\mu q}\sum_{p=q}^{p}\sum_{p=q+2}^{p}\frac{-i^{2}(\beta_{p}+\beta_{q})l_{2}}{(1+\sum_{qq}e^{-i^{2}\beta_{q}l_{2}})(1+\sum_{pp}e^{-i^{2}\beta_{p}l_{2}})}$$

(39)

(40)

$$\frac{5_{\mu\nu}}{g=2} = \frac{5_{\mu\rho}}{q=2} - \frac{2}{1+\frac{5}{2}} \frac{2}{q} \frac{5_{\mu\rho}}{e^{\frac{1}{2}}} \frac{5_{\mu\rho}}{q} \frac{1+\frac{5}{2}}{q} \frac{1+\frac{5}{2}}{q$$

+
$$\sum_{q=2}^{m-2} \sum_{p=q+2}^{m} \frac{2 \sum_{\mu q} \sum_{q \neq p} \sum_{p \neq q} e^{j^2 (\beta_q + \beta_p) \ell_2}}{(1 + \sum_{q q} e^{-j^2 \beta_q \ell_2})(1 + \sum_{p \neq q} e^{j^2 \beta_p \ell_2})}$$

Die Indizes μ und ν sind ungeradzahlig und gelten auf der Eingangsseite, p und q sind die geradzahligen Indizes der Ausgangsseite. Durch ein Wellentypfilter wird $\int_{\nu\nu} = 0$ für $\nu \ge 3$ erreicht.

Die Fourierreihenentwicklung in die Längenharmonischen ergibt:

$$\frac{S_{\mu\mu}}{S_{\mu\mu}} = \frac{S_{\mu\mu}}{q} - \sum_{q=2}^{m} \frac{S_{\mu q}}{s_{\mu q}} \left\{ \sum_{m_q=1}^{2} \left(-\frac{S_{qq}}{s_{q}} \right)^{m_q-1} - j^{2m_q} \beta_q \ell_2 \right\}$$
(41)

+2
$$\sum_{q=2}^{m-2} \sum_{p=q+2}^{m} \sum_{p=q+2}^{p} \sum_{p=q+2}^{p} \sum_{p=q+2}^{p} \sum_{p=q+2}^{-j^{2}(\beta_{p}+\beta_{q})l_{2}} + \frac{R}{p} \mu \mu^{(l_{2})}$$

$$\sum_{\mu \nu} = \sum_{q=2}^{m} - \sum_{q=2}^{m} 2 \sum_{\mu q} \sum_{\nu q} e^{-i^{2}\beta q l_{2}}$$
(42)

+ 2
$$\sum_{q=2}^{m-2} \sum_{p=q+2}^{m} \sum_{p=q+2}^{p} \sum_{p=q+2}^$$

 $\underline{R}_{\mu\mu}(1_2)$ und $\underline{R}_{\mu\nu}(1_2)$ enthalten alle Spektralanteile, die für die Auswertung nicht benötigt werden.

Die Elemente Sympund Sympund er Reflexionsstreumatrix sind in Gleichung (41) und Gleichung (42) erklärt durch ihre längenharmonischen Spektralanteile mit der Kurzschlußschieberstellung 1, als unabhängiger Variabler. Wenn durch einen geeigneten Versuchsaufbau diese Spektralanteile bestimmt werden können, erhält man aus ihnen alle $\underline{S}_{\mu \Psi}$, $\underline{S}_{\mu \Psi}$ und $\underline{S}_{p \Psi}$.

4.2 <u>Analyse der schnellen Abtastschwingungen</u> im Eingangsleiter des (2,n)-Tores

Die Untersuchung der schnellen Abtastschwingungen h₊ im Eingangsleiter nach Gleichung (13) entspricht der Messung der Realteile von Eigenreflexionsfaktor und Umwandlungsfaktoren der eingespeisten Welle bei entsprechender Transformation in die Meßebene:

$$h_{+} = M c_{Z\mu} \sum_{\Psi=0}^{n} c_{Z+} \left[W_{\mu+}^{(4)} \mathcal{R}_{m} \left\{ \frac{S_{\mu+}^{(4)} - j(\beta_{\mu}+\beta_{\mu})(\ell_{4}-Z)}{\sum_{\mu+e}} \right\} + W_{\mu\nu}^{(2)} \mathcal{R}_{m} \left\{ \frac{S_{\mu+e}^{(2)} - j(\beta_{\mu}+\beta_{\nu})(\ell_{4}-Z)}{\sum_{\mu+e}} \right\} \right]$$

Dabei ist µ der Index des eingespeisten und ≁ der des reflektierten Typs. Wenn sich die längenharmonischen Spektralanteile der Gleichung (41) und (42) über das (2,n)-Tor nur in eine Polarisationsrichtung des Eingangs-

(43)

leiters transformieren, erhält man:

66 -

 $\mathbf{h}_{+} = \mathbf{M} c_{\mathbf{z}\mu}^{2} W_{\mu\mu} \mathcal{R}_{\mu} \left[\underbrace{\mathbf{S}_{\mu\mu}}_{\mathbf{z}\mu} \right]$

$$-\sum_{q=2}^{m} \frac{\sum_{\mu q}^{2}}{q} \left(\sum_{m_{q}=1}^{2} (-\sum_{qq})^{m_{q}-1} - j^{2} \frac{m_{q}\beta_{q}\ell_{2}}{e}\right)$$

+ 2
$$\sum_{q=2}^{m-2} \sum_{p=q+2}^{m} \sum_{p=q+2}^{s_{\mu q} S_{\mu p} S_{p q} e} -j^{2} (\beta_{p} + \beta_{q}) \ell_{2} e^{-j^{2} \beta_{\mu} (\ell_{q} - z)} e^{-j^{2} \beta_{\mu} (\ell_{q} - z)}$$

+
$$M C_{Z\mu} \sum_{\mu=0}^{n} C_{Z\mu} W_{\mu\nu} \mathcal{R}_{\mu} \left\{ \left[\frac{S_{\mu\nu}}{2} \right] \right\}$$

$$-2\sum_{q=2}^{m} \sum_{\mu q} \sum_{q \neq q} e^{-j^{2}\beta_{q}\ell_{2}}$$

+2 $\sum_{q=2}^{m-2} \sum_{p=q+2}^{m} \sum_{p=q+2}^{j} \sum_{p=q+2}^{m-2} \sum_{p=q+2}^{m} \sum_{p=q+2}^{j} \sum_{p=q+2}$

+
$$R_{+}(\ell_{2})$$

(44)

Die reflektierten Wellentypen werden nun durch die Fourieranalyse gemäß Gleichung (44) spektral aufgespalten und mittels Wellenlänge identifiziert. Die schnellen Abtastschwingungen haben folgende Spektralanteile:

1. Reflektierter Anteil des eingespeisten Typs μ :

czy Wy Rm Supe = i2βμ(l,-z) Gleichanteil $-c_{\mu}^{2}W_{\mu\mu}\sum_{\mu}^{2}e^{-j2\beta_{\mu}(l_{q}-z)}$ Koeffizient von $2\beta_{q}l_{2}$ $c_{z\mu}^{2} W_{\mu\mu} \frac{S_{\mu}}{S_{\mu}} \frac{S_{q}}{2} \frac{-i2\beta_{\mu}(l_{q}-z)}{Koeffizient von 4\beta_{q}l_{2}}$ $2c_{z\mu}^{2}W_{\mu\mu}S_{\mu q}S_{\mu p}S_{p q}e = Koeffizient von 2(\beta_{p}+\beta_{q})l_{2}$ 2. Reflektierter Anteil des Typs 4 : C= W + Ru {Sur e (Bu+Ba)(4-2) Gleichanteil 2 czµcz+Wµ+ SµqSyqe Koeffizient von 2 βgl2 $2c_{z\mu}c_{z\nu}W_{\mu\nu}S_{\muq}S_{\nu\rho}S_{\rhoq}e^{-i(\beta_{\mu}+\beta_{\nu})(l_{\mu}-z)}$ Koeffizient von 2($\beta_{\rho}+\beta_{q})l_{2}$

Da die Spektralanteile in R und R und keine neue Information über weitere Streumatrixelemente erbringen, werden sie in der Aufstellung nicht erwähnt. Die Schreibweise der Spektralanteile entspricht der Messung der schnellen Abtastschwingungen, wenn auf der Ausgangsseite des Meßobjektes ein Kurzschluß verschoben wird. Bei Frequenzmodulation trägt aber auch der Abstand zwischen Meßobjekt und Abtaster zur Phasendrehung bei. In diesem Fall entsprechen die Abtastschwingungen im Eingangskreis den durch Dopplereffekt verschobenen Längenharmonischen des Ausgangskreises. Durch die Fouriertransformation lassen sich damit grundsätzlich alle Streumatrixelemente ermitteln.

Die Eigenreflexionsfaktoren $\underline{S}_{\mu\mu}$ und \underline{S}_{qq} sowie die Transmissionsfaktoren $\underline{S}_{\mu\rho}$ und die ausgangsseitigen Wellentypverkopplungen \underline{S}_{pq} lassen sich aus dem Amplituden- und Phasenspektrum des reflektierten Anteils des eingespeisten Typs μ gewinnen.

Die Analyse des reflektierten Anteils des Typs \mathscr{V} ergibt die eingangsseitige Wellentypumwandlung $\underline{S}_{\mu\nu}$ des eingespeisten Typs sowie die Transmissionsfaktoren $\underline{S}_{\mu q}$ zwischen allen eingangs- und ausgangsseitigen Typen, sofern die \underline{S}_{pq} bereits ermittelt wurden.

Falls die Rückwärtsanregung des Wellentyps ≁ auf der Eingangsseite nicht bestimmt werden muß, genügt zwar

- 68 -

die Analyse des reflektierten Anteils des eingespeisten Type allein, doch ist der Koeffizient von $2\beta_2 l_2$ des angeregten Typs oftmals erheblich größer als der entsprechende Anteil des eingespeisten Typs. Ausserdem ergibt sich die Möglichkeit der zusätzlichen Wellentyptrennung durch Variation von W, also der Abtastkoordinate auf der Eingangsseite. Im Kreishohlleiter ist dieses eine Rotationsabtastanalyse.

Ist im Eingangsleiter nur ein Wellentyp ausbreitungsfähig, so genügt die Messung des Realteils des Reflexionsfaktors in Abhängigkeit von der Kurzschlußschieberstellung 1, nach Gleichung (41).

Mit Hilfe dieses Verfahrens wurde in [36] ein Wellentypwandler [37] zur Erzeugung der H₀₁-Welle im F-Band (90 -140 GHz) ausgemessen. Da im Eingangsrechteckhohlleiter des Wandlers nur die H₁₀-Welle ausbreitungsfähig ist, werden die längenharmonischen Spektralanteile des Realteils des Eingangsreflexionsfaktors bestimmt.

Bild 22 zeigt das Prinzipschaltbild, die Meßkurve

und das durch schnelle Fouriertransformation gewonnene Raumharmonischenspektrum der Meßkurve A = f(m_q β_q). Als Meßergebnis erscheint die Wandlerstreumatrix:

	H_10	Hoi	Eoz	H31	H_21	H
H10 (0,15	0,60	0,13	0,16	0,15	0,14
Hoi	0,60	0,06	0,02	0,03	0,02	0,07
Eo2	0,13	0,02	-			-
H 0.	0,16	0,03				-
H_21	0,15	0,02	-	-	- 5	- ² -
Harl	0,14	0,07	-	-	_	

Die Matrixelemente ergeben sich unmittelbar aus den Spektralanteilen der Gleichung (41).

Die schnellen Abtastschwingungen wurden im Eingangsleiter eines Kreishohlleiterkrümmers gemessen, mit dessen Hilfe bei 128 GHz die H_{O1}-Welle in die E₁₁-Welle umgewandelt wird.

Bild 23 zeigt das Prinzipschaltbild des Meßaufbaues [43] . Bei jeweils festen Winkelstellungen der Abtastsonde wird die H_z-Komponente ausgekoppelt und die Detektorspannung als Funktion der Kurzschlußschieberstellung gemessen. Für jede Winkelstellung ist eine Fouriertransformation der gemessenen Kurve erforderlich.

r.

a

<u>Bild 24</u>: Azimutale Abhängigkeit der raumharmonischen Spektralanteile A eines Hohlkabelkrümmers

In Bild 24 ist die azimutale Abhängigkeit der raumharmonischen Spektralanteile aufgetragen. Aus der eingangsseitigen H₀₁-Welle entstehen beim Durchgang durch den Krümmer neben der gewünschten E₁₁-Welle auch H₁₁-, H₂₁-, H₃₁-, H₄₁-Wellen und die H₁₂-Welle. Die von der Endplatte durch den Krümmer hindurch reflektierten Störtypen erscheinen am Eingang als winkelabhängige Spektralanteile hauptsächlich in der Form:

2 C = p C = v W pr S pg S + g e - j (B + B +)(l - Z)

Der Wellentyp μ ist hierbei die H₀₁-Welle und ν der angeregte Störtyp. H₁₂- und H₄₁-Welle sind im Kreishohlleiter entartet, während H₂₁- und H₃₁-Welle im unbeschichteten Hohlleiter mit ihrer Phasengeschwindigkeit so dicht bei der E₁₁-Welle liegen, daß ihre Linien nicht aufgelöst werden konnten.

4.3 Reflexionsmessung am Zweiraumresonator

Bildet man die Eingangsleitung des (2,n)-Tores entsprechend Bild 21 als Resonator mit niedriger Güte aus, so läßt sich wie in 3.2.2 die vollständige Streumatrix bis auf Entartungen durch eine Reflexionsmessung bestimmen. Unter Berücksichtigung von Bild 20 ergibt sich aus Gleichung (24) der Eingangsreflexionsfaktor:

$$\mathbf{t} = \Gamma_{00} + \Gamma_{01}^{2} e^{-i^{2}\beta_{1}\ell_{1}} - \Gamma_{01}^{2} \sum_{i=1}^{i} e^{-i^{4}\beta_{1}\ell_{1}}$$

+
$$\Gamma_{01}^{2} \sum_{\mu=1}^{n} \frac{S_{1\mu}^{2} e^{\beta^{2}(\beta_{1}+\beta_{2})k_{1}}}{\prod_{\mu=1}^{n-2} \sum_{\mu=1}^{n-2} 2 \frac{S_{1\mu}^{2} S_{1\mu}^{2} e^{\beta^{2}(\beta_{1}+\beta_{2}+\beta_{2})k_{1}}}{\sum_{\mu=1}^{n-2} 2 \frac{S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} e^{\beta^{2}(\beta_{1}+\beta_{2}+\beta_{2})k_{1}}}}{\sum_{\mu=1}^{n-2} 2 \frac{S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} e^{\beta^{2}(\beta_{1}+\beta_{2}+\beta_{2})k_{1}}}{\sum_{\mu=1}^{n-2} 2 \frac{S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} e^{\beta^{2}(\beta_{1}+\beta_{2}+\beta_{2})k_{1}}}}{\sum_{\mu=1}^{n-2} 2 \frac{S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} S_{1\mu}^{2} S_{1$$

 $+ \underline{R}_{\infty}(l_{A})$

Die vollständige Einsetzung der Gleichungen (41) und (42) führt auf ein verwirrendes Gemisch von Spektralanteilen. Es sollen nun diejenigen Spektrallinien herausgegriffen werden, die voraussichtlich eine große Amplitude haben oder zur Auswertung benötigt werden. Dazu kann man für viele Anwendungen voraussetzen, daß nur die Transmissionsfaktoren \underline{S}_{1p} bzw. \underline{S}_{1q} des eingespeisten Typs, die Reflexionsfaktoren \underline{S}_{pp} bzw. \underline{S}_{pp} und die Umwandlungsfaktoren im selben Wellenleitereingang zu berücksichtigen sind. Dann entfällt im wesentlichen die Doppelsumme in Gleichung (42) und man erhält für den Eingangsreflexionsfaktor:

$$\underline{T} = \underline{\Gamma}_{00} + \underline{\Gamma}_{01}^2 = j^2 \beta_1 l_1 - \underline{\Gamma}_{01}^2 \underbrace{S_{11}}_{-1} = -j^4 \beta_1 l_1$$

$$+ \int_{0^{1}}^{2} \sum_{q=2}^{m} S_{1q}^{2} \left\{ \sum_{m_{q}=1}^{2} (-S_{qq})^{m_{q}-1} e^{-j^{2}m_{q}\beta_{q}\beta_{2}} \right\} e^{j^{2}\beta_{q}\beta_{1}\beta_{1}}$$

$$+2\int_{01}^{2}\sum_{q=2}^{m-2}\sum_{p=q+2}^{m}\sum_{j=1}^{2}\sum_{q=1}^{n}\sum_{p=q+2}^{2}\sum_{p=q+2}^{-j^{2}(\beta_{p}+\beta_{q})\ell_{2}}\sum_{e}^{-j^{2}(\beta_{p}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}}e^{-j^{2}(\beta_{q}+\beta_{q})\ell_{2}$$

+
$$\int_{0^{-1}}^{2} \sum_{\gamma=1}^{n} \frac{5_{\gamma\gamma}^{2} e^{-j^{2}(\beta_{\gamma}+\beta_{\gamma})l_{\gamma}}}{\frac{1}{\gamma}}$$

$$+2\int_{01}^{2}\sum_{\mu=1}^{n}\sum_{\mu=\nu+2}^{n-2}\sum_{1\nu}\sum_{\mu=\nu}^{5}\sum_{\mu\nu}\sum_{\mu\nu}\sum_{e}j^{2}(\beta_{1}+\beta_{1}+\beta_{\mu})\ell_{1}$$

+
$$R_{00}(l_1, l_2)$$

Damit ergibt sich das Schema der Harmonischenanalyse:

Γ. Mittelwert Koeffizient von $2\beta_1 \ell_1$ - [2 5 a Koeffizient von $4\beta_1 \ell_1$ I 01 519 Koeffizient von $4\beta_1l_1 + 2\beta_ql_2$ - [01 S19 S99 Koeffizient von $4\beta_1 \ell_1 + 4\beta_q \ell_2$ 2501 S19 S10 Spg Koeffizient von $4\beta_1 l_1 + 2(\beta_q + \beta_p) l_2$ For 5 2 Koeffizient von $2(\beta_1 + \beta_N) \ell_1$ $2 \int_{0}^{2} S_{1N} S_{1N} S_{\mu} S_{\mu\nu} \quad \text{Koeffizient von } 2 (\beta_{1} + \beta_{\nu} + \beta_{\mu}) l_{1}$ 4.4 (n,n)-Tore

Wellenleiterverzweigungen mit mehr als zwei Zuführungen, von denen jede einen Wellentyp transportieren kann, lassen sich ebenfalls durch Messung des Realteils des eingangsseitigen Reflexionsfaktors als Funktion der Stellung von Kurzschlußschiebern in den Ausgangsleitungen untersuchen.

<u>Bild 25</u> : Signalflußdiagramm und Meßschaltung für ein (n,n) – Tor

Nach Bild 25 ist entsprechend Gleichung (39):

$$\mathbf{I} = \frac{\underline{b}_{0}}{\underline{a}_{0}} = \underbrace{S_{00}}_{W=1} - \sum_{\mu=1}^{n} \frac{\underline{S}_{0\nu}^{2} e^{-\frac{1}{2}\beta_{\nu}\ell_{\nu}}}{1 + \underbrace{S_{\nu\nu}}_{V} e^{-\frac{1}{2}\beta_{\nu}\ell_{\nu}}}$$

+ $\sum_{n=1}^{n-1} \sum_{\mu=\nu+1}^{n} \frac{2 \sum_{0 \neq j \geq \mu \neq e} \overline{j}^{2} (\beta_{\nu} \ell_{\nu} + \beta_{\mu} \ell_{\mu})}{(1 + \sum_{\mu \neq e} \overline{j}^{2} \beta_{\nu} \ell_{\nu})(1 + \sum_{\mu \neq e} \overline{j}^{2} \beta_{\mu} \ell_{\mu})}$

(45)

Das Schema der Harmonischenanalyse lautet:

Mittelwert

Koeffizient von $2\beta_{\nu}\ell_{\nu}$

Sov Swy

500

- 50v

Koeffizient von 4 $\beta_{\gamma} \ell_{\gamma}$

2 Sov Son Spin

Koeffizient von $2(\beta_{\gamma}l_{\gamma} + \beta_{\mu}l_{\mu})$

Die Kurzschlußschieber sollten bei der Messung unterschiedliche Geschwindigkeit haben, damit für die verschiedenen Ausgänge getrennte Spektrallinien entstehen.

Bild 26 : Messung am Resonator mit Leitungsstörung

4.5 Die punktförmige Leitungsstörung

Ein besonderes (2,n)-Tor ist die punktförmige Leitungsstörung, über die der transportierte Wellentyp fast ungestört hinübergelangt. Es ist dieses beispielsweise der Achsversatz oder der Knick an der Flanschverbindung zweier Kreishohlleiter. Während beim Einwellentypleiter die Reflexionen auffallen, interessiert man sich beim Mehrwellentypleiter speziell für die Vorwärtsanregung von Störwellentypen durch die Nutzwelle.

Zur quantitativen Bestimmung der kleinen Kopplungskoeffizienten muß ein Meßverfahren gewählt werden, bei dem die Leitungsstörung in einen Resonator hoher Güte eingebracht wird. Auf beiden Seiten der Störung schließt sich ein längerer homogener Wellenleiter mit zwei hochreflektierenden Endplattenabschlüssen an. Bild 26 zeigt die Reflexionsmessung an diesem Resonator und Bild 27 die Verkopplung der Typen µ und № in der Störung.

In A5 wird zunächst die Reflexionsstreumatrix in der Eingangsebene der Leitungsstörung mit Hilfe des Bildes 27 ausgerechnet. Aus Gleichung (27) ergibt sich dann für den Reflexionsfaktor des Resonators mit stark reflek-

79 -

- 80 -

tierenden Endplatten:

$$\underline{\tau} = \underline{\Gamma}_{00}$$
(46)
$$\Gamma^2 \Gamma$$

$$\frac{1-\frac{1}{2}}{\frac{1}{2}} \left[1-\frac{1}{2} \prod_{i=1}^{n} \prod_{j=1}^{2} \left\{ \prod_{i=1}^{n} \prod_{i=1}^{2} \prod_{i=1}^{n} \prod_{i=1}^{2} \prod_{i=1}^{n} \prod_{i=1}^{2} \prod_{i=1}^{2} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{2} \prod_{i=1}^{n} \prod_{i=1}^$$

Darin bedeutet:

$$\xi = e^{\frac{i^2 \beta_1 (\ell_1 + \ell_2)}{\xi}}$$

Die Gleichungen vereinfachen sich, wenn die zu prüfende Wellentypkopplung an den Resonatoranfang gelegt wird, sodaß ℓ_4 / λ_s klein ist. Ausserdem gilt für die symmetrische Störstelle am Resonatoranfang:

$$k_{1\nu}^{2} = \frac{\underline{\Gamma}_{1\nu}^{2} \left(\underline{\Gamma}_{11} + \underline{\Gamma}_{\nu\nu} \right)^{2}}{\underline{\Gamma}_{11} \ \underline{\Gamma}_{\nu\nu}}$$

Die Bestimmung der Kopplung erfolgt wieder durch Messung von Bandbreite oder Einhüllender der Reflexionsfaktoreinbrüche als Funktion der Frequenz oder der Kurzschlußschieberstellung, Die Fourierreihenentwicklung nach Gleichung (28) und Gleichung (29) ist dann wieder möglich, wenn man durch Einsetzung von

 $g_1 = \Gamma_n \Gamma_{1E}$; $g_1 = \Gamma_{11} \Gamma_{1E} e^{-j^2(\beta_1 - \beta_1)l_2}$

- 81 -

und

$$S_{41} = \frac{\Gamma}{-4E} \qquad ; \qquad \frac{1}{2} = \frac{1}{2} = e^{\frac{1}{2}\beta_{1}\ell_{2}}$$

wieder Gleichung (27) gewinnt.

Zur Überprüfung der Theorie wurde ein Meßaufbau mit einem H₀₁-gespeisten Hohlkabelresonator aus Kreishohlleitern von 50 mm Durchmesser aufgebaut (44) . Als Meßobjekt dient ein dicht hinter der Einkoppelplatte liegender Spiegel. Den Resonatorabschluß bildet ein genau positionierbarer Kurzschlußschieber von etwa 5 m Hub. Gemessen wird der Betrag des Eingangsreflexionsfaktors als funktion der Kurzschlußschieberstellung entsprechend Bild 26.

In [46] wurde eine Meßkurve aufgenommen, aus der Bild 28a einen Ausschnitt zeigt. Im Abstand der halben Haupttypwellenlänge treten die periodischen Reflexionsfaktoreinbrüche auf. Die angekoppelten Störwellentypen verursachen eine ungleichmäßige Amplitude dieser Einbrüche. Die Fouriertransformation der Einhüllenden dieser Resonanzeinbrüche ergibt dann das Schwebungswellenlängendiagramm nach Bild 28b. An der Unterkante des Diagramms sind die nach [47] berechneten Schwebungswellenlängen für einige Wellentypen aufgetragen.

82

<u>Bild 28a</u> : Reflexionsmessung an einem Hohlkabelresonator mit Spiegel [46]

(Ausschnift)

- 83 -

5. Reflexionsmessungen an kurzen Hohlkabeln

Das Ziel dieser Messungen ist die Untersuchung der Ausbreitungseigenschaften der H_{O1}-Welle['] in kurzen meist dielektrisch beschichteten Kreishohlleitern. Abweichungen des Hohlleiters von einem idealen Zylinder in Form von erzwungenen Krümmungen, Achsknickungen und Durchmessersprüngen an Flanschen sowie periodischen inneren Wellungen verursachen geringfügige Störwellentypanregungen.

Wie die einzelne punktförmige Leitungsstörung sind auch schwache räumlich verteilte Kopplungen in einem Hohlkabelstück der Messung zugänglich, wenn ein Resonanzverfahren nach Bild 26 angewendet wird. Das Hohlkabelstück mit Einkoppelplatte und Kurzschlußschieber bildet den Resonator.

5.1 Wellenausbreitung im ungleichförmigen Hohlleiter

Die Ausbreitungsvorgänge in einem inhomogenen Wellenleiterbereich, der zwei homogene Wellenleiter verbindet, lassen sich durch ein System gekoppelter Differentialgleichungen nach Reiter [14] beschreiben. Solymar [15] transformiert diese Telegraphengleichungen von Reiter in das gekoppelte System der hin- und rücklaufenden Wellengrößen:

$$\frac{dg_{\mu}}{dz} = -\frac{4}{2\mu} \frac{d}{dz} \left[ln Z_{\mu} \right] \frac{b_{\mu}}{\mu + \nu} + \sum_{\mu=1}^{n} \left(\frac{\varkappa_{\mu}}{\mu + \nu} \frac{g_{\mu}}{\mu + \nu} + \frac{\varkappa_{\mu}}{\mu + \nu} \right)$$
(47)

$$\frac{db_{\mu}}{dz} = \#\mu b_{\mu} - \frac{1}{2} \frac{d}{dz} \left[ln Z_{\mu} \right] \underline{a}_{\mu} + \sum_{\substack{\mu=1\\\mu\neq\nu}}^{n} \left(\frac{\kappa_{\mu\nu}}{z} \underline{a}_{\nu} + \frac{\kappa_{\mu\nu}}{z} b_{\nu} \right)$$

Es werden auch die $\mathcal{K}_{\mu\nu}$ ausgerechnet. Gleichung (47) eignet sich besonders zur Berechnung der Wellentypumwendlungen an kleinen oder in Ausbreitungsrichtung langsam variierenden Inhomogenitäten. Bei genügendem Abstand der Betriebsfrequenz von der Grenzfrequenz des Hohlleiters werden die Rückwärtsanregungen $\mathcal{K}_{\mu\nu}$ und die Wellenwiderstandsänderungen vernachlässigbar, sodaß nur das System der hinlaufenden Wellengrößen berücksichtigt werden muß:

$$\frac{da_{\mu}}{dz} = -\sharp_{\mu}a_{\mu} + \sum_{\substack{\mu=1\\\mu\neq \gamma}}^{n} \mathcal{K}_{\mu\gamma}a_{\gamma}$$

(48)

Die Wellentypverkopplung für beliebigen Kopplungsverlauf als Funktion der Längenkoordinate z kann nur mit einem Rechner gelöst werden [16] . Von besonderem Interesse sind jedoch Kreishohlleiter mit konstanter Krümmung und periodischer Kopplung. Die Transmissionsmatrix des Hohlleiters mit konstanter Krümmung ergibt sich aus Gleichung (48) :

$$\begin{pmatrix} a_{4}(z) \\ a_{2}(z) \\ a_{3}(z) \\ \vdots \end{pmatrix} = \begin{pmatrix} A_{44} & A_{42} & A_{43} & \cdots \\ A_{42} & A_{22} & A_{23} & \cdots \\ A_{43} & A_{23} & A_{33} & \cdots \\ \vdots & & & & \end{pmatrix} \begin{pmatrix} a_{4}(z=0) \\ a_{2}(z=0) \\ a_{3}(z=0) \\ \vdots \end{pmatrix} (49)$$

Darin bedeuten:

$$A_{\mu \tau} = \frac{X_{\mu \tau}}{Y_{\tau} - Y_{\mu}} \left(e^{\frac{q_{\mu} z}{r}} - e^{\frac{q_{\tau} z}{r}} \right)$$
(51)

$$p_{\nu} = -\left\{ \#_{\nu} + \sum_{\mu=1}^{n} \frac{\mathcal{K}_{\mu\nu}^{+2}}{\#_{\nu}^{-} \#_{\mu}} \right\} = -(\alpha_{\kappa\nu} + j\beta_{\kappa\nu})$$
(52)

- \underline{p}_{ψ} ist die Ausbreitungskonstante des Wellentyps ψ bei Kopplung mit den Typen μ . Voraussetzung der Gleichungen (50) bis (52) ist, daß in der Krümmung $\underline{K}_{\mu\nu}^{+} = \underline{K}_{\nu\mu}^{+}$ gilt [19]. 5.2 Der Resonator mit konstanter Krümmung

Die Ausbreitungseigenschaften eines Hohlkabelkrümmers mit konstanter Kopplung können in einem Resonanzverfahren untersucht werden. Bild 29 zeigt einen Reflexionsresonator mit räumlich verteilter Kopplung. Wenn die Endplattenverluste des Resonators unberücksichtigt bleiben können, errechnet sich der Reflexionsfaktor bei Kopplung zweier Wellentypen :

$$\mathbf{t} = \Gamma_{00} - \Gamma_{01}^{2} \frac{\underline{A}_{11}^{2} (1 - \underline{A}_{22}^{2}) + \underline{A}_{12}^{2} (1 - 2 \underline{A}_{11} \underline{A}_{22})}{(1 - \underline{A}_{11}^{2})(1 - \underline{A}_{22}^{2}) - 2 \underline{A}_{12}^{2} (1 + \underline{A}_{11} \underline{A}_{22})}$$

Nach [17] gilt in der Krümmung:

$$\underline{\mathcal{K}}_{12} = j \frac{C_t}{R(z)} = j C_{12}(z)$$
 (54)

(53)

Mit den üblichen Näherungen gewinnt man dann aus den Gleichungen (50) bis (54) eine übersichtliche Form für den Reflexionsfaktor:

$$\underline{t} \approx \underline{\Gamma}_{00} - \frac{\underline{\Gamma}_{01}^{2} e^{-2 \frac{2}{3} \frac{1}{K_{1}} \frac{2}{Z}}}{1 - e^{-2 \frac{2}{3} \frac{1}{K_{1}} \frac{2}{Z}}}$$
(55)

Das erste Glied in Gleichung (55) beschreibt die Reflexion an der Resonatoreinspeisung. Der zweite Aus-

Bild 29 : Resonator mit verteilter Kopplung

Bild 30 : Leitungszug mit Störung

druck bringt resonanzartige Einbrüche des Reflexionsfaktorbetrages im Abstand einer halben Wellenlänge des Hauptwellentyps. Die Güte dieser Resonanz wird jedoch durch die Kopplung mit einem Störwellentyp nicht beeinflußt. Auch eine Berücksichtigung der bei der Näherung fortgelassenen Glieder zeigt, daß keinesfalls eine schwebungswellenlängenperiodische Bandbreiteschwankung der Resonanzen des Reflexionsfaktors in Abhängigkeit von der Frequenz auftritt, solange die Endplattenverluste vernachlässigt werden. Für die Bandbreite des Hauptwellentyps ergibt sich:

$$\sigma_1 \approx 2 \left(1 - e^{-2\alpha_{K1}Z}\right)$$

Krümmt man also einen Hohlkabelresonator, so ergibt sich eine Dämpfungserhöhung nur aus der Vergrößerung von α_{K1} . Nach Gleichung (52) erhöht sich die Dämpfungskonstante in der Krümmung:

(56)

$$\alpha_{K1} \approx \alpha_1 + (\alpha_2 - \alpha_1) \left(\frac{C_{12}}{\beta_1 - \beta_2}\right)^2$$
 (57)

Die Differenz der Phasenkonstanten bei dielektrisch beschichteten Kreishohlleitern sind in [20] als Funktion der Frequenz berechnet worden.

5.3 Der Reflexionsresonator mit periodischer Wellentypverkopplung

In diesem Abschnitt soll untersucht werden, wie sich eine fertigungsbedingte schwache periodische Wellentypkopplung zwischen zwei Wellentypen bei der Messung eines kurzen Hohlkabelstücks im Reflexionsresonator bemerkbar macht. Die weiteren Gleichungen gelten für den Fall des periodisch gewellten Hohlleiters. Bei zwei Wellentypen lautet dann Gleichung (48) :

$$\frac{d \alpha_1}{dz} = - \frac{1}{2} \frac{\alpha_1}{\alpha_1} + \frac{1}{2} \frac{\alpha_2}{\alpha_2}$$

$$\frac{d \alpha_2}{dz} = \frac{1}{2} \frac{1}{2} \frac{\alpha_1}{\alpha_1} - \frac{1}{2} \frac{\alpha_2}{\alpha_2}$$
(58)

Die Raumharmonischen der periodischen Kopplung werden wie in [17] angesetzt:

$$C(z) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{i}{2}\pi n \frac{z}{L}}$$
(59)

Lösung nach dem Verfahren von Picard [18] :

$$\begin{pmatrix} \underline{\alpha}_{1}(\mathbf{Z}) \\ \underline{\alpha}_{2}(\mathbf{Z}) \end{pmatrix} = \begin{pmatrix} \underline{A}_{12}(\mathbf{Z}) & \underline{A}_{12}(\mathbf{Z}) \\ \underline{A}_{12}(\mathbf{Z}) & \underline{A}_{22}(\mathbf{Z}) \end{pmatrix} \begin{pmatrix} \underline{\alpha}_{1}(0) \\ \underline{\alpha}_{2}(0) \end{pmatrix}$$
(60)

Rückwärtsanregungen werden nicht betrachtet.

$$A_{11}(z) = e^{-\frac{1}{2}\sqrt{z}} \left\{ 1 - \int c(s) e^{-\frac{1}{2}\sqrt{z}} ds \int c(\frac{1}{2}) e^{-\frac{1}{2}\sqrt{z}} d\frac{1}{2} \right\}$$
(61)

$$\underline{A}_{22}(z) = e^{-\frac{1}{2}z^{2}} \left\{ 1 - \int_{C}^{z} (g) e^{(\frac{1}{2} - \frac{1}{2}q)g} dg \int_{C}^{z} (f_{2} - \frac{1}{2}q)g^{2} dg \right\}$$
(62)

$$\underline{A}_{12}(z) = e^{-\frac{1}{2}z} \left\{ j \int_{0}^{z} c(z) e^{-(\frac{1}{2}-\frac{1}{2})z} dz \right\}$$
(63)

Die Elemente der Transmissionsmatrix nehmen am Ende des Wellenleiterabschnitts der Länge L den Wert an:

$$\underline{A}_{41}(L) = |\underline{A}_{41}(L)| e^{\frac{1}{2}g_{41}}; \quad \underline{A}_{22}(L) = |\underline{A}_{22}(L)| e^{\frac{1}{2}g_{22}}$$
(64)

$$|\underline{A}_{+1}(L)| \approx e^{-\alpha_{+}L} \left[1 - \frac{L^{2}}{2} \sum_{m=-\infty}^{+\infty} \sum_{m=\infty}^{+\infty} c_{m}^{*} c_{n} (-1)^{(n-m)} \right]$$

$$\frac{\sin \pi \left(\frac{\Delta \beta L}{2\pi} - m\right) \sin \pi \left(\frac{\Delta \beta L}{2\pi} - n\right)}{\pi \left(\frac{\Delta \beta L}{2\pi} - m\right) \pi \left(\frac{\Delta \beta L}{2\pi} - n\right)} \right]$$

 $c_{m} = c_{-m} + = 1 + 2$

(65)

$$g_{**} \approx - \beta_{*}L + (-1)^{*-4} \frac{L^2}{2} \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} c_m^* c_n (-1)^{(n-m)}$$

٢

$$\cdot \frac{\left(\frac{\Delta\beta L}{2\pi} - m\right)\pi\cos\left(\frac{\Delta\beta L}{2\pi} - m\right)}{\left(\frac{\Delta\beta L}{2\pi} - m\right)^{2}\pi^{2} + \left(\frac{\Delta\alpha L}{2}\right)^{2}} \frac{\sin\pi\left(\frac{\Delta\beta L}{2\pi} - n\right)}{\left(\frac{\Delta\beta L}{2\pi} - n\right)\pi}\right]$$

$$\underline{A_{42}}(L) \approx jLe^{-\frac{\frac{\pi}{2} + \frac{\pi}{2}}{2}L} \sum_{n=-\infty}^{+\infty} c_n(-1)^n \frac{\sin \pi \left(\frac{\Delta \beta L}{2\pi} - n\right)}{\pi \left(\frac{\Delta \beta L}{2\pi} - n\right)}$$

Führt man die Rechnung ebenso wie im Abschnitt 5.2 durch, so erhält man für die Bandbreitenschwankung des Hauptwellentyps:

$$\int_{1}^{2} = 2 \left[1 - e^{-2\alpha_{A}L} \left\{ 1 - F(\Delta\beta L) \cdot \frac{e^{\Delta\alpha L} \left(\Delta\alpha L + \cos\Delta\beta L \right)}{2\Delta\alpha L} \right] \frac{2\Delta\alpha L}{1 + e^{-2\alpha_{A}L}} \right]$$

$$F(\Delta\beta L) = 2L^{2} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} c_{n}c_{m}(-1) \frac{(m+n)}{2\pi} \frac{\sin \pi \left(\frac{\Delta\beta L}{2\pi} - n\right)}{\pi \left(\frac{\Delta\beta L}{2\pi} - n\right)} \frac{\sin \pi \left(\frac{\Delta\beta L}{2\pi} - m\right)}{\pi \left(\frac{\Delta\beta L}{2\pi} - m\right)}$$

(67)

(66)

6. Messungen an Kettenschaltungen und Leitungen

40

In diesem Kapitel soll untersucht werden, mit welchen Meßverfahren eine Analyse von Mehrwellentypnetzwerken möglich ist. Die Netzwerke sollen aus Kettenschaltungen von durch Mehrwellentypleiter verbundenen Bauelementen gebildet werden. Das Problem besteht darin, Ort und Streumatrix konzentrierter frequenzunabhängiger Koppelelemente in Breitbandsystemen zu bestimmen, ohne daß das Netzwerk geöffnet werden muß. Voraussetzung der Untersuchung ist, daß die Ausbreitungskonstanten der verschiedenen Wellentypen in den einzelnen Netzwerkabschnitten bekannt sind. Damit kann das Signalflußdiagramm der grundsätzlichen Netzwerkstruktur aufgezeichnet werden. Die Information über die unbekannten Koppelelemente werden aus der Frequenzabhängigkeit des Reflexionsfaktors oder aus seinem Einschwingverhalten bei definierten Erregungsfunktionen gewonnen.

6.1 Das Signalflußdiagramm im Frequenz-

und Zeitbereich

Das Signalflußdiagramm dient der schnellen und übersichtlichen Berechnung von Übertragungsfunktionen, beschreibt also die Wellenausbreitung im Frequenzbereich. Die Ausbreitung stationärer Testmikrowellen durch hintereinanderliegende $\underline{S}_{\mu\nu}(\underline{p})$ wird durch einfache Multiplikation der betreffenden Streumatrixelemente berechnet. Die Übertragung beliebiger Testfunktionen über ein lineares Mikrowellennetzwerk beschreibt man häufig mit dem Umkehrintegral der Laplace-Transformation. Eine Testfunktion A(t) erzeugt am Ausgang des Netzwerks mit der Übertragungsfunktion $\underline{T}_{\mu\nu\nu}(\underline{p})$ die Antwortfunktion:

$$B(t) = \frac{1}{2\pi j} \int_{-j\infty}^{t/\infty} \frac{pt}{p_{\mu}(p)e \, dp}$$

$$= \frac{1}{2\pi j} \int_{-j\infty}^{t/\infty} \frac{1}{p_{\mu}(p) \cdot a_{\mu}(p)e^{pt} \, dp}$$

$$= \frac{1}{2\pi j} \int_{-j\infty}^{t/\infty} \frac{1}{p_{\mu}(p) \cdot a_{\mu}(p)e^{pt} \, dp}$$

(68)

mit:

$$\underline{a}_{+}(\underline{a}) = \int_{-\infty}^{\infty} A(t) e^{-pt} dt$$

$$+ = 0$$

Das Umkehrintegral wird oft nicht ausgewertet, sondern es werden die Korrespondenztabellen [21] verwendet. Für eine große Zahl von Problemen kann Gleichung (68) nur mit numerischen Methoden ausgewertet werden [22].

Ein Signalflußdiagramm im Zeitbereich könnte nun die Ausbreitung und Verformung von Testfunktionen im Netzwerk

- 95 -

verdeutlichen. In einem derartigen Gebilde müssen die Gewichtsfunktionen G $\mu \gamma$ (t) an die Stelle der Streumatrixelemente $\underline{S} \mu \gamma$ (\underline{p}) treten:

$$G_{\mu +} = \mathcal{I}^{-1} \left\{ \sum_{\mu +} (p) \right\}$$
 (69)

(70)

Die Hintereinanderschaltung $G_3(t)$ zweier Gewichtsfunktionen $G_1(t)$ und $G_2(t)$ wird durch die Faltung bestimmt:

$$G_{3}(t) = \int_{0}^{t} G_{1}(\tau) G_{2}(t-\tau) d\tau$$

Die Durchführung dieser Einzelrechnungen ist bei beliebigen $G_{\mu\nu}(t)$ und $A_{\nu}(t)$ eine aufwendige und undankbare Arbeit.

Besteht das Netzwerk jedoch aus frequenzunabhängigen inhomogenen Raumbereichen, die durch Wellenleiter mit definierten Wellentypen verbunden sind, so läßt sich ein anschauliches Bild der Wellenausbreitung mit einem Signalflußdiagramm im Zeitbereich gewinnen. Für ein derartiges Netzwerk kann der Übertragungsfaktor durch periodische Funktionen der Frequenz dargestellt werden. Die Antwort auf eine Erregungsfunktion ist dann mit einer Echomethode errechenbar [23]. Für die Streumatrixelemente des Netzwerks wird damit eine frequenzunabhängige Dämpfung und Laufzeit im untersuchten Spektralbereich vorausgesetzt. Bild 30 zeigt ein Beispiel für ein Signalflußdiagramm im Frequenz- und Zeitbereich. Es stellt eine Leitung mit Wellenwiderstandssprung und Kurzschluß am Ende dar. Zur besseren Unterscheidbarkeit sind die Vorgänge im Zeitbereich durch gestrichelte Linien dargestellt. Bild 31 gibt eine Zusammenstellung der Rechenregeln des Signalflußdiagramms im Frequenz- und Zeitbereich. Dabei muß die in den Gewichtsfunktionen enthaltene Laufzeit berücksichtigt werden. Die Rückkopplungsschleife erzeugt, wenn die Übertragungsfunktion eine periodische Funktion der Frequenz ist, im Frequenzbereich Raumharmonische und im Zeitbereich Vielfachreflexionen bzw. Echos (vgl. Regel 3).

6.2 Raumharmonischenanalyse

Der Reflexionsfaktor einer Kettenschaltung von inhomogenen Raumbereichen, die durch homogene Wellenleiter verbunden sind, läßt sich aus dem Signalflußdiagramm mittels der Pfadschleifenregel gewinnen. Die Weiterverarbeitung des Ergebnisses zur raumharmonischen Derstellung gestaltet sich entsprechend Gleichung (43) und (44). Von der hier betrachteten Kettenschaltung

. 97 -

1. Serienschaltung

2. Parallelschaltung

3. Rückkopplungsschleife

 $S_{22}(p) = G_{22}(t)$ $S_{21}(p) = G_{22}(t)$ $S_{21}(p) = G_{22}(t)$ $G_{22}(t) = G_{32}(t)$ $A_{4}(t) = B_{2}(t) = B_{3}(t)$ $B_{3}(p) = G_{4}(p) = \frac{S_{21}(p)}{1 - S_{22}(p)}$ $S_{32}(p) = G_{4}(p) = S_{21}(p) = S_{32}(p)$ h = 0 $S_{3}(t) = A_{4}(t) + G_{24}(t) + G_{32}(t) + \sum_{n=0}^{\infty} G_{22}(t)$

<u>Bild 31</u> : Rechenregeln des Signalflußdiagramms im Frequenz- und Zeitbereich mit vielen unterschiedlichen Gliedern wird nun angenommen, die Eigenreflexionsfaktoren $\underline{S}_{\mu\mu}(n)$ und die Wellentypumwandlungsfaktoren $\underline{k}_{(n)}$ nach Bild 32 seien so klein, daß Potenzen und Produkte von $\underline{S}_{\mu\mu}(n)$ sowie Dreifachprodukte von $\underline{k}_{(n)}$ vernachlässigt werden können. Rückwärtsanregungen sind in Bild 32 nicht eingezeichnet. Unter diesen Voraussetzungen werden alle Vorgänge durch die Verkopplung von zwei wellentypen erfaßt. Durch Reflexion und Umwandlung bilden sich also keine Resonanzen hoher Güte.

Zwei Anwendungsfälle mit eindeutiger Lösung sind interessant:

Störstellenortung: Gesucht sind Lage und Streumatrix
 von Störungen auf einer homogenen Leitung mit bekannten
 Phasenkonstanten.

2. Untersuchung von Kettenschaltungen: Gesucht ist die Streumatrix von Bauelementen die in bekannten Abständen durch bekannte Wellenleiter verknüpft sind.

Wenn bei der Störstellenortung β_1 und β_2 längs der Leitung konstant bleiben, erhält man als Eingangsreflexionsfaktor, wobei Λ den jeweiligen Umwandlungs-

Bild 32 : Zweiwellentypkettenleiter

100 -

1 (*) ist darin die Störstellenkoordinate und es wird vorausgesetzt, daß die in den Sender reflektierte Störwelle durch ein Wellentypfilter absorbiert wird, d.h. [] = 0. Die Frequenzabhängigkeit des Reflexionsfaktors wird nach [24] behandelt:

$$\beta_{\star} = \beta_{\star} \bigg|_{\omega_{\bullet}} + \frac{d\beta_{\star}}{d\omega} \bigg|_{\omega_{\bullet}} \Delta \omega$$
(72)

 $\Delta \omega$ ist dann die Frequenzabweichung von einer Mittenfrequenz ω_o . β_v verläuft in einigem Abstand von der Grenzfrequenz des Wellentyps 🎸 näherungsweise linear:

$$\frac{d\beta_{\gamma}}{d\omega}\Big|_{\omega_{o}} = \frac{d}{d\omega}\left\{\frac{1}{v_{o}}\sqrt{\omega^{2}-\omega_{g}^{2}}\right\}\Big|_{\omega_{o}} = \frac{1}{v_{o}}\frac{\lambda_{\gamma}}{\lambda}$$
(73)

verlust ausdrückt:

Man mißt nun den Realteil des Reflexionsfaktors in Abhängigkeit von der Frequenz. Die Meßkurve verläuft für $\Gamma_{2}=\Gamma_{4}=-1$ nach folgender Funktion: $\mathcal{R}_{n}\left\{\frac{\underline{b}_{o}(\Delta\omega)}{\underline{a}_{o}(\Delta\omega)}\right\} = -\Lambda_{1}\cos\left\{2\beta_{1}\left|l_{(n+1)}+2\frac{1}{v_{0}}\frac{\lambda_{1}}{\lambda}\right|l_{(n+1)}\Delta\omega\right\}$ + $\sum_{\mu = 1}^{N} \Lambda_{2\psi} | \frac{5}{22(\psi)} | \cos \left\{ \frac{4\beta_1}{\beta_1} | \frac{l_{(\eta+1)}}{\omega_0} - \frac{2\beta_1}{\omega_0} | \frac{l_{(\psi)}}{\omega_0} \right\}$ $- \mathcal{G}_{221} + \frac{1}{v_o} \left[\frac{4}{\lambda_a} \frac{\lambda_a}{\lambda} \Big|_{(n+1)}^2 - \frac{2}{\lambda_a} \frac{\lambda_a}{\lambda} \Big|_{(4)}^2 \right] \Delta \omega \right]$ +2 $\sum_{\mu=1}^{n} \sum_{\gamma=\mu+1}^{n} \Lambda_{3\mu\gamma} |k_{(\mu)}| |k_{(\nu)}| \cos \{2\beta_1 |l_{(n+1)} \\ w_0 \}$ + $(\beta_1 | - \beta_2 |)(\ell_{(\mu)} - \ell_{(+)}) - (\varphi_{\kappa\mu} - \varphi_{\kappa+})$ $+\frac{1}{v_{o}}\left[\frac{\lambda_{1}}{\lambda}\Big|^{2}l_{(n+1)}+\left(\frac{\lambda_{1}}{\lambda}\Big|-\frac{\lambda_{2}}{\lambda}\Big|\right)(l_{(\mu)}-l_{(\mu)})\right]\Delta\omega\right]$ + $\sum \Lambda_{4+1} | \underline{S}_{14(4)} | \cos \left\{ 2\beta_1 | \ell_{(1)} - \underline{\varphi}_{14} - \frac{1}{v_0} \frac{\lambda_1}{2} | 2\ell_{(4)} \Delta \omega \right\}$ $-2\sum_{\mu=1}^{n}\sum_{\substack{\gamma=\mu+1}}^{n}\Lambda_{5\mu\gamma}|\underline{k}_{(\mu)}||\underline{k}_{(\nu)}|\cos\left\{2\beta_{2}|\ell_{(n+1)}\right\}_{\omega_{0}}$ + $(\beta_1 - \beta_2)(l_{(\mu)} + l_{(+)}) - (g_{K\mu} + g_{K\nu})$ + $\frac{1}{v_0} \left[\frac{\lambda_2}{\lambda} \right] 2 l_{(n+1)} + \left(\frac{\lambda_1}{\lambda} - \frac{\lambda_2}{\lambda} \right) (l_{(\mu)} + l_{(\nu)}) \Delta \omega$ (74)

Nach Zusammenfassung der festen Phasen:

$$\begin{aligned} \mathcal{R}_{\mathcal{H}}\left\{\frac{\underline{b}_{o}(\Delta\omega)}{\underline{g}_{o}(\Delta\omega)}\right\} &= -\Lambda_{4}\cos\left\{\underline{g}_{1} + \frac{2}{v_{o}}\frac{\lambda_{i}}{\lambda}\Big|\ell_{(n+1)}\Delta\omega\right\} \quad (75) \\ &+ \sum_{\psi=4}^{n}\Lambda_{2\psi}|\underline{S}_{22(\psi)}|\cos\left\{\underline{g}_{2\psi} + \left[\frac{4}{v_{o}}\frac{\lambda_{i}}{\lambda}\Big|\ell_{(n+4)} - \frac{2}{v_{o}}\frac{\lambda_{i}}{\lambda}\Big|\ell_{(\psi)}\right]\Delta\omega\right\} \\ &+ 2\sum_{\psi=4}^{n}\sum_{\psi=\mu+4}^{n}\Lambda_{3\mu\psi}|\underline{k}_{(\mu)}||\underline{k}_{(\psi)}|\cos\left\{\underline{g}_{3\mu\psi} + \frac{4}{v_{o}}\left[2\frac{\lambda_{i}}{\lambda}\Big|\ell_{(n+4)} + \left(\frac{\lambda_{i}}{\lambda}\Big| - \frac{\lambda_{2}}{\lambda}\Big|\ell_{(\mu)} - \ell_{(\psi)}\right)\right]\Delta\omega\right\} \\ &+ \sum_{\psi=4}^{n}\Lambda_{4\psi}|S_{44}(\psi)|\cos\left\{\underline{g}_{4\psi} + \frac{2}{v_{o}}\frac{\lambda_{i}}{\lambda}\Big|\ell_{(\psi)}\Delta\omega\right\} \\ &- 2\sum_{\mu=4}^{n}\sum_{\psi=\mu+4}^{n}\Lambda_{5\mu\psi}|\underline{k}_{(\mu)}||\underline{k}_{(\mu)}||\underline{k}_{(\mu)}|\cos\left\{\underline{g}_{5\mu\psi} + \frac{2}{v_{o}}\frac{\lambda_{i}}{\lambda}\Big|\ell_{(\psi)}\Delta\omega\right\} \\ &+ \frac{4}{v_{o}}\left[2\frac{\lambda_{i}}{\lambda}\Big|\ell_{(n+4)} + \left(\frac{\lambda_{i}}{\lambda}\Big| - \frac{\lambda_{i}}{\lambda}\Big|\right)\left(\underline{k}_{(\mu)} - \ell_{(\mu)}\right)\right]\Delta\omega\right\} \end{aligned}$$

Die einzelnen Glieder der Gleichung (75) haben folgende Bedeutung:

Glied: Reflexion am Hauptwellentypkurzschluß
 Glied: Reflexion an der Rückseite der Störstellen,
 die über den Hauptwellentypkurzschluß an den Eingang
 transformiert wird.

3. Glied: Reflexion am Hauptwellentypkurzschluß, mit

Hin- oder Rückweg über Konversion und Rekonversion. 4. Glied: An der Störstelle reflektierter Hauptwellentypanteil.

5. Glied: Reflexion am Störwellentypkurzschluß, die über die Störstelle an den Eingang transformiert wird.

Die einzelnen Glieder werden durch die Fouriertransformation getrennt und ergeben bei genügend großem Produkt aus Frequenzhub und Lauflänge 1 verschiedene Linien im Amplitudenspektrum. Das Problem verlagert sich auf die Deutung der Spektrallinien. Bei einer oder zwei Störstellen müßte die Deutung gelingen. Bei vielen Spektrallinien empfiehlt sich die Methode des variierenden Abschlusses. Man kann in folgenden Schritten vorgehen:

1. Absorberabschluß: Das Spektrum zeigt nur die Hauptwellentypreflexion an den Störstellen.

2. Abschluß mit Wellentypfilter und Kurzschluß: Es erscheint die Hauptwellentypreflexion an der Kurzschlußplatte als starke Linie, das schwache Spektrum der Reflexionen an der Rückseite der Störstellen, und das Konversions- Rekonversionsspektrum.

3. Kurzschluß ohne Wellentypfilter: Die Linien der Störwellentypreflexion am Kurzschluß kommen hinzu. Damit sind die Reflexionsfaktoren des Hauptwellentyps auf der Vorder- und Rückseite und die Umwandlungsfaktoren bekannt. Die Λ können bei kleinen Störungen nur wenig kleiner als 1 sein.

Die Fourieranalyse des Reflexionsfaktors Gleichung (75) liefert ein Linienspektrum mit $\left(\frac{d\beta_{V}}{d\omega}\right)$ ℓ_{V} bzw. der doppelten Gruppenlaufzeit zwischen Meßpunkt und Reflexionsstelle als Abszisse. Die Entfernung der Reflexionsstelle kann also mit Hilfe der Gruppenlaufzeitcharakteristik der einzelnen Wellentypen festgestellt werden. Die Fouriertransformation bewirkt eine Transformation des Reflexionsfaktors aus dem Frequenzbereich in den Gruppenlaufzeitbereich:

$$\mathcal{R}_{n}\left\{\underline{r}\left(\Delta\omega\right)\right\} \longrightarrow \sigma + (t_{gr}) \tag{76}$$

Nach derselben Methode können auch Leitungen mit starken Störungen behandelt werden. Das gemessene Spektrum ist jedoch bei vielen Störstellen schwer zu deuten, da durch die Vielfachreflexionen jede Störstelle viele Linien erzeugt.

In [38] wird eine Distanzmeßanlage beschrieben, mit der im X-Band auf einem 10 m langen Rechteckhohlleiter Störungen geortet werden. Die Frequenz des Mikrowellengenerators wird zeitproportional mit unterschiedlicher Geschwindigkeit aber gleichbleibendem Wobbelhub durchgestimmt. Am Eingang der Leitung liegt lose angekoppelt eine Diode mit nachfolgendem Niederfrequenzfilter. Die Distanz einer Reflexionsstelle ist direkt proportional zur Modulationsperiode. Das Gerät zeichnet den Reflexionsverlauf über der Leitungslängenkoordinate auf (vgl. Bild 35).

Zur Untersuchung der Störstellenortung in Mehrwellentypleitern wurde in [45] ein Meßaufbau erprobt. Gemessen wird der Reflexionsfaktor eines 16 m langen Rundhohlleiters mit künstlich eingefügten Störstellen bei wellentypselektiver H₁₁ -Speisung und zeitproportionaler Änderung der Generatorfrequenz. Die Fourierenalyse des somit zeitabhängigen Reflexionsfaktors des Netzwerks ergibt ein Spektrum der Raumharmonischen, aus dem die Lage der Störstellen und die Größe ihrer Reflexion ermittelt werden. Ein aus den Ergebnissen in [45] gezeichnetes Raumharmonischenspektrum zeigt Bild 34.

Bild 34 : Störstellenortung im Mehrwellentypleiter

107 -

Bild 36 : Breitbandimpulsreflektometer

6.3 Messung des Umkehrintegrals der

Fouriertransformation

Die Reflexionsstellenortung in kurzen Einwellentypleitern ist mit Schaltungen möglich, die die inverse Fouriertransformation nachbilden:

$$T(\frac{1}{4}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \pm (\omega) e^{j\omega t} d\omega$$

Darin bedeuten $\underline{\mathbf{r}}(\boldsymbol{\omega})$ den Eingangsreflexionsfaktor des **Meßobjekts und t₄ die doppelte** Laufzeit-zwischen Meß**punkt und Reflexionsstelle.**

(77)

Das Prinzip einer derartigen Schaltung nach [25] zeigt Bild 33. Eine Interferometerschaltung mit zwei Gegentaktsynchronmischern liefert

$$\mathcal{R}_{u}\left\{ \underline{\tau}(\omega) e^{j\omega t_{v}} \right\}$$

und

e swt.

wobei

im Referenzzweig durch Reflexion an einem Kurzschlußschieber erzeugt wird. Bei konstanter Kurzschlußschieberstellung wird die Frequenz durchgewobbelt, integriert und $|\underline{r}(t)|$ gebildet. Der Vorgang wird für verschiedene Kurzschlußstellungen wiederholt. Die jeweiligen Ergebnisse werden als punktförmige Kurve über der Kurzschlußschieberstellung aufgezeichnet. Weil das Integral nur einen Wert hat, wenn $\underline{r}(\omega)$ auch einen Spektralanteil mit ωt_{γ} enthält, bekommt $1_{\gamma} = vt_{\gamma}$ die Bedeutung der Reflexionsstellenkoordinate.

Des Verfahren bleibt bei Einwellentypleitern mit schwachen Reflexionsstellen, konstanter Phasengeschwindigkeit über die Längenkoordinate und Absorberabschluß anschaulich. Die Methode entspricht der punktweisen Fouriertransformation und ist deshalb langsam im Vergleich zu den Methoden, die den Einsatz der schnellen Fouriertransformation ermöglichen. Eine ähnliche Meßschaltung ist in [26] beschrieben.

6.4 <u>Prüfung mit definierten Testfunktionen</u>6.4.1 <u>Breitbandimpulsreflektometer</u>

Beim Breitbandimpulsreflektometer wird ein Spannungssprung an die zu prüfende Leitung gelegt. Das Einschwingverhalten, also die Überlagerung von Sendeund Antwortfunktion nach Gleichung (68), wird auf dem

- 110 -

Oszillographenschirm beobachtet:

 $= \frac{A_o(t) + B_o(t)}{2 A_o(t)}$ 4(+) 4q

 $u_g = H \ddot{o}he des Spannungssprungs$ $A_0(t) = Sprungfunktion$ $<math>\underline{a}_0(\underline{p}) = \frac{1}{\overline{p}}$

Aus dem Verlauf der Meßkurve nach Gleichung (78) kann Lage und Art der Störstelle auf der Leitung mit Tiefpaßcharakter gedeutet werden. Die Domäne dieses Verfahrens sind Koaxialleitungen, bei denen Störwellentypen nicht ausbreitungsfähig sind. Starke Reflexionsstellen in Koaxialsystemen, die die Bandbreite des Übertragungsbereichs eingrenzen, führen zu langen Einschwingzeiten und schwer zu deutenden Oszillographenbildern. Die Bilder sind für Modellstrukturen nach der Echomethode berechenbar.

Ein Beispiel ist die kurzgeschlossene Leitung mit Wellenwiderstandssprung nach Bild 30a. Für die Streumatrixelemente gilt:

$$S_{44} = -S_{22}$$
 ; $S_{42}^2 = 1 - S_{44}^2$

Der Eingangsreflexionsfaktor ist im Frequenzbereich eine periodische Funktion der Frequenz. Er lautet:

$$\frac{b_{0}}{2} = e^{-i^{2}\beta_{1}\ell_{1}} \left\{ S_{11} - \frac{(1-S_{11}^{2})e^{-j^{2}\beta_{2}\ell_{2}}}{1-S_{11}e^{-i^{2}\beta_{2}\ell_{2}}} \right\}$$
(80)

(78)

(79)

$$\frac{b_{0}}{a_{0}} = S_{44} e^{-ij^{2}\beta_{4}\ell_{4}} - (1 - S_{44}^{2}) e^{-ij^{2}(\beta_{4}\ell_{4} + \beta_{2}\ell_{2})} - S_{44}(1 - S_{44}^{2}) e^{-j^{2}(\beta_{4}\ell_{4} + 2\beta_{2}\ell_{2})} - S_{44}^{2}(1 - S_{44}^{2}) e^{-j^{2}(\beta_{4}\ell_{4} + 3\beta_{2}\ell_{2})} - S_{44}^{2}(1 - S_{44}^{2}) e^{-j^{2}(\beta_{4}\ell_{4} + 3\beta_{2}\ell_{2})}$$
(81)

Die Umrechnung in den Zeitbereich mit $j\beta_v \ell_v = p \ell_v$ ergibt nach der Echomethode:

$$B_{o}(t) = S_{44} A_{o}(t - 2t_{A}) - (1 - S_{41}^{2}) A_{o}(t - 2t_{4} - 2t_{2}) -S_{44}(1 - S_{41}^{2}) A_{o}(t - 2t_{4} - 4t_{2}) - S_{44}(1 - S_{41}^{2}) A_{o}(t - 2t_{4} - 4t_{2})$$
(82)

Jeder Raumharmonischen entspricht ein Echo, das sich im Zeitbereich bei Sprunganregung als Reflex auf dem Oszillographenschirm äussert. Die Bilder 36 und 37 zeigen Schaltung und Einschwingverhalten des Beispiels. Der Vorteil dieses Reflektometertyps besteht darin, daß auch festgestellt werden kann, ob die Reflexion von Wellenwiderstandssprung, kapazitiver oder induktiver Störung herrührt. Es wird eine ausserordentlich hohe Auflösung erreicht [27]. Die Leitungslänge zur Reflexionsstelle beträgt:

$$L = v_1 t_1$$

(83)

des Breitbandimpulsreflektometers bei kurzgeschlossener Leitung mit Wellenwiderstandssprung

Bild 38: Schmalbandimpulsreflektometer

Bei der Prüfung von Kabeln widmet man den periodischen Geometriestörungen besondere Aufmerksamkeit. Wenn nämlich ihre Periode einer halben Wellenlänge entspricht, kommt es zu erheblichen Reflexionen. Das Breitbandimpulsreflektometer zeigt nun unmittelbar die zugehörige Raumperiode [39].

6.4.2 Schmalbandimpulsreflektometer

[28] In wird ein Reflektometer beschrieben, bei dem gemäß Bild 38 die Senderenergie für eine kurze Impulsdauer auf die Leitung geschickt wird. Die Reflexe nach Bild 39 werden mit den Sampling-Oszillographen beobachtet. Der Impulsgenerator wird vom Mikrowellengenerator über den Oszillographen phasenrichtig getriggert, damit man ein stehendes Bild erhält. Das Gerät kann zur Ausmessung von Schmalband- und Hochpaßsystemen eingesetzt werden. Aus dem Oszillographenbild geht nicht der Charakter der Leitungsstörung hervor. Genauigkeit und Auflösung sind geringer als beim Breitbandimpulsreflektometer. Da das Sendespektrum schmal um den Mikrowellenträger gruppiert ist, kann aus dem Signalflußdiagramm im Zeitbereich die Echofolge hergeleitet werden. Ein jeder Reflex entsteht nach der Echomethode, die der Potenzreihenentwicklung im p-Bereich entspricht, durch den Transport der Mikrowellenenergie längs eines in sich geschlossenen Weges

- 114 -

<u>Bild 39</u>: Oszillographenbild des Schmalbandimpulsreflektometers

im Signalflußdiagramm. Im Meßobjekt nach Bild 30b entsteht der erste Reflex am Wellenwiderstandssprung, der nächste am Kurzschluß, der folgende an der Rückseite des Wellenwiderstandssprungs usw. Mit $S_{11} = G_{11}$ und Gleichung (79) gewinnt man daraus unmittelbar wieder Gleichung (82). Dem entspricht Bild 40.

Ähnliche Reflektometerschaltungen werden für Dämpfungsund Laufzeitmessungen an langen Leitungen verwendet [29].

7. Messungen an periodisch variierenden Netzwerken

7.1 MeGprinzipien

Die Streumatrixelemente des Netzwerks sollen periodische Funktionen der Zeit sein, sodaß nach einer Periodendauer T das Netzwerk in den ursprünglichen Zustand bei t = O zurückkehrt. Die Periode der höchsten Netzwerkfrequenz sei groß gegen die Mikrowellenperiode. Der Reflexionsfaktor ist dann:

$$\underline{\tau}(t) = \sum_{\gamma=0}^{n} \underline{\tau}_{\gamma} e^{\frac{2\pi\gamma}{T}t}$$

Beispiele hierfür sind der Modulator, der gleichmäßig bewegte Einwellentypleiterkurzschluß oder der in den Wellenleiter eingefügte Halbleiterkristall mit periodisch

(84)

- 116 -

variierender Kleinsignalleitfähigkeit. Die Aufgabe besteht also darin, einzelne Streumatrixelemente einer bekannten Netzwerkstruktur als Funktion der Zeit zu messen.

Als grundsätzliche Meßmethoden bieten sich an: 1. Sampling-Verfahren: Die Meßkurve des Realteils des Reflexionsfaktors eines Netzwerks mit variierenden Streumatrixelementen als Funktion der Kurzschlußschieberstellung oder der Frequenz wird im Zeitabstand T gesampelt, z.B. mit einem Box-Car-Detektor. Nach Fouriertransformation der Einhüllenden liefert das Spektrum die Streumatrixelemente zur Zeit t . Das gleiche Verfahren wird anschließend zur Analyse weiterer k Samplekurven verwendet, die um k ∆ T versetzt sind. Der Verlauf der Spektrallinien als Funktion von k∆T ergibt die zeitabhängigen Streumatrixelemente.

2. Gesamtanalyse: Die Raumharmonischenanalyse mit Kurzschlußschieber oder Frequenzmodulation am zeitveränderlichen Netzwerk ergibt eine Aufspaltung der Spektrallinien des Zeitkonstantennetzwerks. Das Verfahren führt auf ein schwer zu deutendes Spektrum und kann nur bei langsam variierenden Parametern angewendet werden.

3. Ausblendung: Einzelimpulse wie in Bild 40 werden durch ein im Zeitabstand T getriggertes Gate ausgeblendet und auf dem Oszillographen als Funktion der Zeit dargestellt.

4. Parameteraufspaltung: Die zeitabhängigen Streumatrixelemente werden durch Resonatoren hoher Güte isoliert, sodaß ihr Zeitverlauf unmittelbar auf dem Oszillographen sichtbar gemacht werden können.

7.2 Reflexionsmessung am Halbleiter

Die Methode der Parameteraufspaltung wird beispielsweise zur Messung des Reflexionsverhaltens einer Hohlleiterabschlußplatte verwendet, die teilweise aus Halbleitermaterial und teilweise aus Metall besteht

[30] [31] [32] [33] [34] . Derartige Untersuchungen wurden zur Bestimmung der Kleinsignalmikrowellenleitfähigkeit von Indiumantimonid unter dem Einfluß eines elektrischen Gleichfeldes durchgeführt. Damit der Helbleiterkristall nicht überlastet wird, läßt man die erforderlichen hohen Ströme nur als kurze Impulse von 1 µ s Dauer im Abstand von etwa 1 s fließen. Entsprechend schnell muß die Änderung der Reflexionsstreumatrix registriert werden.

Das Verfahren besteht nach [35] darin, die Trennlinie zwischen der Metall- und der Halbleiterfläche des Abschlusses so zu wählen, daß bei einem geeigneten Wellentyp keine Wandstromlinien geschnitten werden. Die E_{11} -Welle ist besonders geeignet, da sie zwei halbkreisförmige Stromlinien besitzt. Die Endplatte kann aufgebohrt und das Loch mit dem Kristall bedeckt werden. Die Änderung des Eigenreflexionsfaktors der E_{11} -Welle genügt dann zur Bestimmung der Halbleitereigenschaften. Für die Parameterabtrennung wird ein Resonator möglichst hoher Güte mit der beschriebenen Endplatte versehen und die E_{11} -Welle angeregt. Die Schemaskizze des Meßresonators zeigt Bild 41.

Der Eingangsreflexionsfaktor des Resonators wird durch Gleichung (26) beschrieben. Bei der Messung wählt man sich zur Parameterabtrennung nun eine E_{11n}-Resonanz, in deren unmittelbarer Nähe keine Störresonanzen auftreten, sodaß Gleichung (26) einfach wird:

$$\underline{r}(t) = \underline{\Gamma}_{00} + \frac{\underline{\Gamma}_{01}^{2} \underline{S}_{41}(t) e^{-j2\beta_{4}\ell}}{1 - \underline{\Gamma}_{41} \underline{S}_{41}(t) e^{-j2\beta_{4}\ell}}$$

Gemessen wird nun $|\underline{r}(t)|$. Durch die Impulsbelastung zeigen sich eine Gütsänderung und Frequenzverschiebung der E_{11n}-Resonanz (vgl. Bild 42). Aus der Bandbreitenformel

 $\delta(t) = 2(1 - |\Gamma_{ad}||S_{ad}(t)|)$

- 119 -

<u>Bild 42</u> : Änderung der Resonanzkurve eines In Sb - Kristalls bei Impulsbelastung E_

ergibt sich der Betrag des zeitabhängigen Reflexionsfaktors

$$|\underline{S}_{44}(t)| = \frac{1}{|\underline{\Gamma}_{44}|} \left(1 - \frac{\delta(t)}{2}\right)$$

Die Phasenverschiebung $\Delta g_{44}(t)$ von $\underline{S}_{11}(t)$ erhält man aus der Mittenfrequenzänderung:

$$\Delta g_{44}(t) = 2 \Delta \beta_4(t) \ell = \frac{4 \pi \Delta f(t) \ell}{v_{E_{44}}}$$

8. Zusammenfassung

Das lineare Mikrowellennetzwerk wird als Zusammenschaltung homogener Wellenleiter mit Wellenleiterverzweigungen dargestellt. Die Wellenleiter führen verschiedene unabhängige Wellentypen, die in den Verzweigungen miteinander verkoppelt sind und dort auch reflektiert werden können. Daraus ergibt sich als Ziel aller Reflexionsmessungen an passiven linearen Netzwerken die Bestimmung dar unbekannten Streumatrixelemente, der Leitungslängen und der Wellentypen in den Leitungen. Die meßtechnische Bestimmung eines Streumatrixelementes zerfällt in drei Teilprobleme, die Aussiebung zweier Wellentypen, ihre Identifizierung und die quantitative Erfassung des die zwei Typen

- 121 -

verbindenden Streumatrixelementes nach Betrag und Phase.

Zur Beschreibung des Reflexionsverhaltens in der Eingangsbezugsebene des Netzwerks wird eine Reflexionsstreumatrix definiert. Ihre Streumatrixelemente ändern sich, wenn die elektrischen Längen des Netzwerks oder die Abschlüsse seiner beschaltbaren Ausgänge definiert geändert werden. Aus dieser Änderung sind die Einzelstreumatrixelemente des Netzwerks bestimmbar. Ebenso kann die Antwort auf bestimmte Testsendefunktionen verwertet werden.

Zunächst werden verschiedene Methoden zur Messung der Reflexionsstreumatrixelemente von (1,n)-Toren beschrieben. Hier bieten sich die Oberflächenabtastung, Verzweigungsschaltungen und Resonanzverfahren an.

Das Prinzip der Oberflächenabtastung, das beim Einwellentypleiter in Form der Meßleitung verwirklicht ist, läßt sich auch für Vielwellentypleiter verallgemeinern. Durch feste oder bewegliche Abtastsonden werden die magnetischen oder elektrischen Oberflächenfeldstärken auf dem Zuführungsleiter erfaßt. Übersichtliche Verhältnisse ergeben sich, wenn bei wellentypselektiver Speisung des Meßobjekts die Elemente der Reflexionsstreumatrix durch Fouriertransformation der abgetasteten Felder bestimmbar sind. Erhöhte Aufmerksamkeit wird wegen der technischen Bedeutung dem kreiszylindrischen Hohlleiter gewidmet.

Verzweigungsschaltungen setzt man meistens zur Reflexionsmessung in Einwellentypleitern ein. Nur in seltenen Fällen werden sie in Verbindung mit wellentypselektiven Richtkopplern bei Kreishohlleitern benutzt. Der Vorteil dieser Schaltungen besteht in der schnellen und unkomplizierten Gewinnung der Streumatrixelemente schnell variierender Netzwerkparameter. Sie eignen sich auch zu Breitbandmessungen.

Bei den Resonanzmeßverfahren wird das Meßobjekt in ein stark frequenzabhängiges Testnetzwerk eingefügt, das durch das Meßobjekt verstimmt und bedämpft wird, und dessen Wellentypen verkoppelt werden. Die Wellentypen werden mittels Wellenlänge getrennt und identifiziert. Je nach Meßobjekt ergeben sich Meßresonatoren hoher oder niedriger Güte mit zwei sehr unterschiedlichen Meßmethoden. Im Fall des Resonators niedriger Güte erscheinen die Resonanzen der einzelnen Wellentypen durch direkto Transformation an der Meßstelle, während bei hoher Güte nur der Einfluß der Verkopplung auf die Hauptwellentyresonanz beobachtet wird. Für genügend starke Wellentypumwandlung oder ausreichend hohe Verluste im Meßobjekt entsteht der Resonator mit niedriger Güte. Das Meßobjekt bildet den Abschluß des Resonators, und in die Zuleitung wird eine Blende ohne Wellentypverkopplung eingefügt. Da die einzelnen Wellentypen keine ausgeprägten Einzelresonanzen bilden, sondern sich überlagern, wird eine Fouriertransformation des Verlaufs von Real- oder Imaginärteil des Reflexionsfaktors vorgenommen, wenn die elektrische Länge des Resonators gleichmäßig geändert wird.

Der Reflexionsresonator hoher Güte muß bei großem Eigenreflexionsfaktor der Wellentypen und geringer Wellentypverkopplung verwendet werden. Das Verfahren verwertet den Einfluß der Wellentypkonversion-rekonversion auf die Hauptwellentypresonanz, indem die Veränderung der Bandbreite oder des Resonanzeinbruchs als Funktion der elektrischen Resonatorlänge gemessen wird. Die Fouriertransformation des Bandbreiteverlaufs oder der Einhüllenden der Resonanzeinbrüche des Hauptwellentyps gestattet die Bestimmung der Streumatrixelemente des Meßobjekts und die Identifizierung der Störwellentypen an Hand der Schwebungswellenlänge.

- 124 -

Die Resonanzmessung kann auch mit einer Oberflächenabtastung kombiniert werden, wenn die Polarisationsrichtung der vom MeGobjekt angeregten Wellentypen festgestellt oder Wellentypen mit gleicher Wellenlänge getrennt werden sollen. Nach Herleitung der Formeln für die Zylindermantelabtastung eines Vielwellentypresonators mit Wellentypkopplung wird der Spezialfall der Abtastung eines H₀₁-gespeisten Störwellentypresonators behandelt. Hier gerät nur der Störwellentyp in Resonanz, während die H₀₁-Welle die Funktion des Überlagereroszillators einer phasenempfindlichen Oberflächenabtastung übernimmt.

Die Reflexionsmessungen an Wellenleiterverzweigungen, die im Sinne der Streumatrixschreibweise als (k,n)-Tore bezeichnet werden, finden ihre Anwendung hauptsächlich bei den (2,n)-Toren oder den (n,n)-Toren. (2,n)-Tore sind beispielsweise Krümmer, Wellentypfilter oder Wellentypwandler. während (n,n)-Tore als Einwellentypverzweigungen auftreten.

Zur Bestimmung der Übertragungseigenschaften von (2,n)-Toren empfiehlt sich die Analyse der schnellen Abtastschwingungen, die durch gleichmäßige Bewegung eines ausgangsseitigen Kurzschlußschiebers im eingangsseitigen Detektor gebildet werden. Bei (n,n)-Toren wird der Realteil des Eingangsreflexionsfaktors gemessen, wenn in den anderen Wellenleitern Kurzschlußschieber mit unterschiedlicher Geschwindigkeit laufen.

Einen Spezialfall des (2,n)-Tores stellt die punktförmige Leitungsstörung dar, über die die Wellen fast ungestört hinübergelangen. Hier muß die Vorwärtsanregung der Störwellen durch die Nutzwelle bestimmt werden. Gemessen wird hier der Reflexionsfaktorbetrag eines durch Kopplung gestörten Resonators hoher Güte als Funktion der Resonatorlänge.

Eine weitere Form des (2,n)-Tores sind Hohlkabel mit räumlich ausgedehnten Wellentypkopplungen, wie gleichmäßigen oder periodischen Krümmungen. Gegenstand des 5. Kapitels ist das Reflexionsverhalten von Hohlkabelresonatoren mit derartigen Kopplungsfunktionen.

Im 6. Kapitel werden Kettenschaltungen von (2,n)-Toren und Leitungen behandelt. Es wird untersucht, mit welchen Meßverfahren derartige Mehrwellentypnetzwerke quantitativ analysiert werden können. Wenn die Netzwerkstruktur grundsätzlich bekannt ist, kann die Frequenzabhängigkeit des Reflexionsfaktors oder das Einschwingverhalten bei definierten Erregungsfunktionen ausgewertet werden. Praktische Anwendung findet die Raumharmonischenanalyse, eine Analogschaltung zur Messung des Umkehrintegrals der Fouriertransformation, die Sprungfunktion und der Schmalbandimpuls.

Das letzte Kapitel ist den Messungen an periodisch variierenden Netzwerken gewidmet. Als Beispiel für die Methode der Parameteraufspaltung sind Messungen an periodisch erregten Indiumantimonidkristallen beschrieben. Anhang

A1 <u>Herleitung der Abtastkoeffizienten für den</u> Kreishohlleitermantel

Nach [8] ist die Feldstärkeverteilung der Wellentypen am Kreishohlleitermantel bei linearer Polarisation : H[mn]-Wellen

$$\underline{H}_{z} = H_{zo} \sqrt{\frac{2}{\pi(1+\delta_{om})}} \frac{\cos(m\psi - \psi_{[mn]})}{\sqrt{\frac{2}{g_{[mn]}^{1/2} - m^2}}} e^{\frac{1}{2}j(\beta_{[mn]}Z - \chi_{[mn]})}$$

$$\frac{H_{\psi}=\pm j H_{z0} m}{y'_{[mn]} q} \sqrt{\frac{1-q^2}{\pi(1+d_{om})}} \frac{\sin(m\psi-\psi_{[mn]})}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}}{\sqrt{y'_{[mn]}}} \frac{-m^2}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}}{\sqrt{y'_{[mn]}}} \frac{-\chi_{[mn]}$$

$$\underline{E}_{+} = \frac{1}{2} j H_{ZO} \frac{m}{y'_{[mn]}} \cdot \frac{Z_{O}}{9} \sqrt{\frac{2}{\pi(1+\delta_{Om})}} \frac{\sin(m\psi - \psi_{[mn]})}{\sqrt{y'_{[mn]}^2 - m^2}} e^{\pm j(\beta_{[mn]}Z - \chi_{[mn]})}$$

$$E_{r} = \frac{1}{j} E_{zo} \frac{1}{\frac{1}{y(mn)}} \frac{\sqrt{1-q^{2}}}{q} \sqrt{\frac{2}{\pi(1+\sigma_{om})}} \cos(m\psi - \psi_{(mn)})} e^{\frac{1}{2}j(\beta_{(mn)})^{2}-\chi_{(mn)})}$$

$$H_{\psi} = \pm \frac{1}{y} E_{20} \frac{1}{y(mn)} \frac{1}{Z_{0}q} \sqrt{\frac{2}{\pi(1+\delta_{om})}} \cos(m\psi - \psi(mn))} e^{\pm \frac{1}{y}(\beta(mn))^2 - \chi(mn))}$$

Darin bedeuten:

$$q = \frac{\lambda}{\lambda_g}$$
 ; $\mathcal{Y}[mn] = \frac{2\pi\alpha}{\lambda_g}$; $\mathcal{Y}(mn) = \frac{2\pi\alpha}{\lambda_g}$

Ebenfalls nach [8] :

$$P_{[mn]} = H_{zo[mn]}^{2} Z_{o} \frac{\lambda_{g}^{4}}{4\pi^{2}\lambda\lambda_{H}} = \frac{1}{2} |\underline{a}_{[mn]}|^{2}$$

$$P_{(mn)} = \frac{E_{zo(mn)}^{2}}{Z_{o}} \frac{\lambda_{g}^{4}}{4\pi^{2}\lambda\lambda_{H}} = \frac{1}{2} |\underline{a}_{(mn)}|^{2}$$

Damit können H_{zO} [mn] und E_{zO(mn)} durch die Wellengrößen ausgedrückt werden. Zur hinlaufenden Welle gehören:

$$\underline{a}_{[mn]}(z) = |\underline{a}_{[mn]}|e^{-j(\beta_{[mn]}z - \chi_{[mn]})}$$

$$\underline{a}_{(mn)}(z) = |\underline{a}_{(mn)}| e^{-i(\beta_{(mn)}z - \chi_{(mn)})}$$

und zur rücklaufenden:

$$\underline{b}_{[mn]}(z) = |\underline{a}_{[mn]}| e^{+\frac{1}{2}(\beta_{[mn]}\overline{z} - \chi_{[mn]})}$$

$$\underline{b}_{(mn)}(z) = |\underline{a}_{(mn)}| e^{+\frac{1}{2}(\beta_{(mn)}^2 - \chi_{(mn)})}$$

Die Einsetzung ergibt:

$$\begin{split} & H_{[mn]}^{Wellen} \\ & \underline{H}_{Z[mn]} = \left\{ \underline{a}_{[mn]}(\overline{z}) + \underline{b}_{[mn]}(\overline{z}) \right\} c_{\overline{z}[mn]} \cos(m\psi - \psi_{[mn]}) \\ & \underline{H}_{Z[mn]} = \left\{ \underline{a}_{[mn]}(\overline{z}) - \underline{b}_{[mn]}(\overline{z}) \right\} c_{\psi[mn]} \sin(m\psi - \psi_{[mn]}) \\ & \underline{H}_{\Psi[mn]} = \left\{ \underline{a}_{[mn]}(\overline{z}) + \underline{b}_{[mn]}(\overline{z}) \right\} c_{\gamma[mn]} \sin(m\psi - \psi_{[mn]}) \\ & \underline{E}_{r[mn]} = \left\{ \underline{a}_{[mn]}(\overline{z}) + \underline{b}_{[mn]}(\overline{z}) \right\} c_{r[mn]} \sin(m\psi - \psi_{[mn]}) \end{split}$$

$$E_{(mn)} = \left\{ a_{(mn)}(z) + b_{(mn)}(z) \right\} c_{r(mn)} cos(m\psi - \psi_{(mn)})$$

$$H_{\psi(mn)} = \left\{ a_{(mn)}(z) - b_{(mn)}(z) \right\} c_{\psi(mn)} cos(m\psi - \psi_{(mn)})$$

Die Abtastkoeffizienten lauten:

$$c_{z[mn]} = \frac{\sqrt{\lambda \lambda_{H}}}{a \sqrt{Z_{o} \lambda_{g}}} \frac{1}{\sqrt{\pi (1 + \delta_{om})}} \frac{1}{\sqrt{1 - (\frac{m \lambda_{g}}{2\pi a})^{2}}}$$

$$G_{\psi[mn]} = \frac{1}{\sqrt{\frac{\lambda}{\lambda_{H}}}} \sqrt{\frac{1}{Z_{o}}} \frac{m\lambda_{q}}{2\pi\alpha^{2}} \frac{1}{\sqrt{\pi(1+\delta_{om})'}} \frac{1}{\sqrt{1-(\frac{m\lambda_{q}}{2\pi\alpha})^{2}}}$$

$$C_{r[mn]} = \frac{1}{2} \sqrt{\frac{2}{\sigma}} \sqrt{\frac{\lambda_{\mu}}{\lambda}} \frac{m \lambda_{g}}{2\pi \alpha^{2}} \frac{1}{\sqrt{\pi(1+\delta_{om})}} \frac{1}{\sqrt{1-(\frac{m \lambda_{g}}{2\pi d})^{2}}}$$

- 130 -

$$C_{r(mn)} = i \sqrt{2} \sqrt{\frac{\lambda}{\lambda_{\mu}}} \frac{1}{\alpha} \frac{1}{\sqrt{\pi}(1+d_{om})}$$

$$C_{\psi(mn)} = \frac{1}{\sqrt{Z_{\bullet}}} \sqrt{\frac{\lambda_{H}}{\lambda}} \frac{1}{\alpha} \frac{1}{\sqrt{\pi(1+d_{om})}}$$

A2 Berechnung der Abtastschwingungen

Das Koordinatensystem und die Polarisationsrichtungen werden so gewählt, daß $\psi_{\mu} = \psi_{r} = 0$ ist. Gleichung (11) ergibt dann für die Ausgangsspannung eines quadratischen Detektors:

+
$$\sum_{\mu=1}^{n} \left\{ \sum_{\psi \mu}^{(41)} \cos m_{\psi} \psi + \sum_{\psi \mu}^{(21)} \sin m_{\psi} \psi \right\} c_{z\psi} e^{-\frac{1}{2} (\beta_{z} + \beta_{\mu})(\ell-2)} \Big|^{2}$$

$$= h_0 + h_+ + h_-$$

$$h_{\bullet} = M \left[c_{z\mu}^{2} \cos m_{\mu} \psi + \sum_{\gamma=1}^{n} \sum_{g=1}^{n} \left\{ \frac{S_{\phi\mu}^{(14)}}{\cos m_{\psi} \psi} + \frac{S_{\psi\mu}^{(24)}}{\sin m_{\psi} \psi} \right\}.$$

$$\left\{ \frac{S_{g\mu}^{(11)}}{\cos m_{g} \psi} + \frac{S_{g\mu}^{(24)}}{\sin m_{g} \psi} \right\}$$

$$\begin{split} h_{*} &= 2Mc_{2\mu}\cos m_{\mu}\psi \left[\sum_{q=q}^{n} c_{2\psi} \left\{ |\sum_{q\mu}^{(4q)} |\cos m_{v}\psi \cos[(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(4q)}] + |\sum_{q\mu}^{(2q)} |\sin m_{v}\psi \cos[(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(2q)}] \right] \right] \\ &+ |\sum_{q\mu}^{(2q)} |\sin m_{v}\psi \cos[(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(2q)}] \right] \\ h_{*} &= Mc_{2\mu} \sum_{q=q}^{n} c_{2*} \left\{ |\sum_{q\mu}^{(4q)} |(\cos (m_{v}+m_{\mu})\psi + \cos (m_{v}-m_{\mu})\psi) - \cos[(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(4q)}] + |\sum_{q\mu}^{(2q)} |(\sin (m_{q}+m_{\mu})\psi + \sin (m_{v}-m_{\mu})\psi) - \cos[(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(4q)}] + \sum_{q=q}^{(2q)} |(\beta_{v}+\beta_{\mu})(\ell-\bar{z})-g_{\mu}^{(4q)}] \right] \\ h_{-} &= 2M \ \mathcal{R}_{H} \left[\sum_{q=q}^{n-1} \sum_{q=q+q}^{n} c_{2\psi} c_{2g} \left\{ \sum_{q\mu}^{(4q)} \cos m_{v}\psi + \sum_{\nu\mu}^{(2q)} \sin m_{v}\psi \right\} - \left\{ \sum_{q\mu}^{(2q)} \cos m_{g}\psi + \sum_{q\mu}^{(2q)} \sin m_{g}\psi \right\}_{e}^{-\frac{1}{q}(\beta_{v}-\beta_{g})(\ell-\bar{z})} \right] \end{split}$$

- 132 -

$$\begin{split} h_{-} &= M \sum_{\gamma=1}^{n-1} \sum_{g=\gamma+1}^{n} c_{\overline{z}_{\gamma}} c_{\overline{z}_{S}} \Big\{ \Big| \frac{\xi^{(4+1)}}{\xi^{(\mu)}} \Big| \Big| \frac{\xi^{(2+1)}}{\xi^{(\mu)}} \Big| \Big| (\cos(m_{\psi} + m_{g})\psi + \cos(m_{\psi} - m_{g})\psi \Big) \\ &\cdot \cos \Big[(\beta_{\psi} - \beta_{S})(\ell - z) - \frac{g^{(4+1)}}{g^{(\mu)}} - \frac{g^{(4+1)}}{g^{(\mu)}} \Big] \\ &+ \Big| \frac{\xi^{(4+1)}}{y_{\mu}} \Big| \Big| \frac{\xi^{(2+1)}}{g_{y\mu}} \Big| (\sin(m_{S} + m_{\psi})\psi + \sin(m_{S} - m_{\psi})\psi \Big) \\ &\cdot \cos \Big[(\beta_{\psi} - \beta_{S})(\ell - z) - \frac{g^{(4+1)}}{g^{(\mu)}} - \frac{g^{(2+1)}}{g^{(2+1)}} \Big] \\ &+ \Big| \frac{\xi^{(2+1)}}{g^{(\mu)}} \Big| \Big| \frac{\xi^{(2+1)}}{g^{(\mu)}} \Big| (\sin(m_{\psi} + m_{S})\psi + \sin(m_{\psi} - m_{S})\psi \Big) \\ &\cdot \cos \Big[(\beta_{\psi} - \beta_{S})(\ell - z) - \frac{g^{(2+1)}}{g^{(\mu)}} - \frac{g^{(2+1)}}{g^{(\mu)}} \Big] \\ &+ \Big| \frac{\xi^{(2+1)}}{g^{(\mu)}} \Big| \Big| \frac{\xi^{(2+1)}}{g^{(\mu)}} \Big| (\cos(m_{\psi} - m_{g})\psi - \cos(m_{\psi} + m_{S})\psi \Big) \\ &\cdot \cos \Big[(\beta_{\psi} - \beta_{S})(\ell - z) - \frac{g^{(2+1)}}{g^{(\mu)}} - \frac{g^{(2+1)}}{g^{(\mu)}} \Big] \Big\} \end{split}$$

A3 <u>Berechnung des Reflexionsresonators</u> Berechnung der Übertragungsfunktion

Nach Bild 18 wird $\underline{b}_0/\underline{a}_0$ berechnet, wobei alle Glieder mit $\underline{S}_{\mu\nu\nu}^m$ mit m > 2 und $\mu \neq \nu$ vernachlässigt werden, da die Wellentypumwandlung im Meßobjekt klein sein soll. Zur Berechnung wird die Pfadschleifenregel verwendet. Pfade:

$$\begin{split} & P_{0} = \int_{00}^{2} \int_{41}^{2} e^{-j^{2}\beta_{1}l} \\ & P_{4} = \int_{01}^{2} \int_{41}^{2} e^{-j^{2}\beta_{1}l} \\ & P_{2} = \int_{01}^{2} \int_{22}^{2} \int_{12}^{2} e^{-j^{2}(\beta_{1}+\beta_{2})l} \\ & P_{3} = \int_{01}^{2} \int_{33}^{2} \int_{13}^{2} e^{-j^{2}(\beta_{1}+\beta_{3})l} \\ & P_{n} = \int_{01}^{2} \int_{-\pi n}^{2} \int_{-\pi n}^{2} e^{-j^{2}(\beta_{1}+\beta_{n})l} \\ & Schleifen: \\ & 1. \ \text{Ordnung:} \\ & \frac{K_{1,4}^{(1)}}{K_{1,4}} = \int_{444}^{4} \int_{444}^{4} e^{-j^{2}\beta_{4}l} \end{split}$$

 $\frac{K^{(4)}}{\sum_{\mu \nu}} = \frac{\sum_{\mu \nu}^{2} \Gamma_{\mu \mu} \Gamma_{\nu \nu}}{\sum_{\mu \nu} \sum_{\mu \nu} \Gamma_{\mu \mu} \Gamma_{\nu \nu}} e^{-\frac{1}{2} (\beta_{\mu} + \beta_{+}) \ell}$

4 + N

2. Ordnung:

 $\underline{K}_{1,\mu\nu}^{(2)} = \underline{K}_{1,\mu}^{(4)} \cdot \underline{K}_{1,\nu}^{(4)}$ μ + 4 μ + 4 + g $\frac{K_{2}^{(2)}}{K_{2},\mu\nug} = \frac{K_{4}^{(4)}}{K_{4},\mu} \cdot \frac{K_{2}^{(4)}}{K_{2},\nug}$

3. Ordnung:

$$K_{1,\mu\nug}^{(3)} = K_{1,\mu}^{(4)} \cdot K_{1,\eta}^{(4)} \cdot K_{1,g}^{(4)} \qquad \mu \neq \nu \neq g$$

$$K_{2,\mu\nug\tau}^{(3)} = K_{1,\mu}^{(4)} \cdot K_{1,\nu}^{(4)} \cdot K_{2,g\tau}^{(4)} \qquad \mu \neq \nu \neq g \neq \tau$$

n. Ordnung:

$$\frac{K_{4_{j}\lambda_{4}}^{(n)}}{\sum_{a_{j}\lambda_{4}}^{(n)}} = \prod_{i=4}^{n} \left\{ \frac{K_{4_{j}\lambda_{i}}^{(4)}}{\sum_{i=4}^{n-4}} \left\{ \frac{K_{4_{j}\lambda_{i}}^{(4)}}{\sum_{i=4}^{n-4}} \left\{ \frac{K_{4_{j}\lambda_{i}}^{(4)}}{\sum_{i=4}^{n-4}} \right\} \cdot \frac{K_{2_{j}n_{j}n+4}^{(4)}}{\sum_{i=4}^{n-4}} \lambda_{\mu} \neq \lambda_{\mu}$$

Übertragungsfaktor nach der Pfadschleifenregel:

$$T_{s_{i}q} = \frac{\sum_{\mu} \rho_{\mu} (1 - \sum_{\nu} \underline{K}_{\nu,\mu}^{(n)} + \sum_{\nu} \underline{K}_{\nu,\mu}^{(2)} - + \cdots)}{1 - \sum_{\nu} \underline{K}_{\nu}^{(n)} + \sum_{\nu} \underline{K}_{\nu}^{(2)} - + \cdots}$$

135 -

1 p. y - 218- B.H

$$\mathbf{I} = \int_{00}^{0} + \frac{\mathbf{Z}(\mathbf{Z})}{N(\mathbf{Z})} ; \qquad \mathbf{Z} = e^{i\mathbf{j}\mathbf{Z}\boldsymbol{\beta}_{\mathbf{z}}\boldsymbol{\ell}}$$

 $P_0 = \Gamma_{00}$; $P_1 = Z^{-1} \Gamma_{01}^2 S_{11}$

 $P_{z} = \bar{z}^{-1} \Gamma_{01}^{2} \frac{5^{2}}{5_{17}} \Gamma_{\tau\tau} e^{-i^{2}\beta_{\tau}\ell} \qquad \tau \ge 2$

Zähler:

$$\overline{Z}(\overline{z}) = \overline{z}^{1} \int_{0^{1}}^{2} \left\{ S_{11} \cdot \underline{R}_{1}(n) + \sum_{\tau=2}^{n} S_{1\tau}^{2} \int_{\tau\tau}^{-ij 2\beta_{\tau} \ell} \underline{R}_{\tau}(n) \right\}$$

Die Abkürzung \underline{R}_{γ} (n) berücksichtigt diejenigen Schleifen, die den Pfad τ nicht berühren. \underline{R}_{γ} (n) ist ein Spezialfall des Nenners <u>N</u>(n) und wird nach dessen Berechnung angegeben.

Andere Schreibweise für die Schleifen:

1. Ordnung:

 $K_{1,\nu}^{(4)} = \Xi^{-1} \Gamma_{\nu\nu} S_{\nu\nu} e^{-j^2 (\beta_{\nu} - \beta_{\nu}) \ell}$

 $K_{2,\mu\nu}^{(4)} = \Xi^{-2} \sum_{\mu\nu}^{2} \Gamma_{\mu\mu} \Gamma_{\nu\nu} e^{-j2(\beta_{\mu} - \beta_{\mu})\ell} - j2(\beta_{\mu} - \beta_{\mu})\ell} e^{-j2(\beta_{\mu} - \beta_{\mu})\ell} e^{-j$

2. Ordnung:

 $\frac{K_{1,\mu\nu}^{(2)}}{K_{1,\mu\nu}} = \underline{z}^{-2} \prod_{\mu\mu} \prod_{+\nu} \sum_{\mu\mu} \sum_{\nu\nu} \overline{z}_{\nu\nu} = \frac{i}{2} \frac{(\beta_{\mu} - \beta_{\lambda})\ell}{e^{-\frac{i}{2}(\beta_{\mu} - \beta_{\lambda})\ell}} = \frac{i}{2} \frac{(\beta_{\mu} - \beta_{\lambda})\ell}{e^{-\frac{i}{2}(\beta_{\mu} - \beta_{\lambda})\ell}}$

K2,μrg- = -3 52 5μμ [μμ[ν+ [gg e - j2(β,-β)]-j2(β,-β)]-j2(βg-β)]

3. Ordnung:

 $\frac{K_{1,\mu+g}^{(2)}}{E} = \frac{z^{-3}}{2} \prod_{\mu,\mu} \prod_{+\nu} \prod_{gg} \sum_{\mu,\mu} \sum_{gg} \sum_{e} \frac{-j^{2}(\beta_{\mu}-\beta_{e})\ell}{e} - \frac{j^{2}(\beta_{\nu}-\beta_{e})\ell}{e} - \frac{j^{2}(\beta_{\mu}-\beta_{e})\ell}{e} - \frac{j^{2}(\beta_{\mu}-\beta_{\mu}-\beta_{\mu}-\beta_{\mu})\ell}{e} - \frac{j^{2}(\beta_{\mu}-\beta_{\mu}$

 $\underline{K}_{2,\mu\nug\tau} = \underline{\underline{F}}_{\mu\mu} \underline{\Gamma}_{\nu\nu} \underline{\Gamma}_{ss} \underline{\Gamma}_{\tau\tau} \underline{S}_{\mu\mu} \underline{S}_{\nu\nu} \underline{S}_{s\tau} \underline{e}^{2} \underline{-j^{2}(\beta_{\mu}-\beta_{\nu})\ell}_{e} \underline{-j^{2}(\beta_{\nu}-\beta_{\nu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\nu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\sigma}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\mu}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\mu}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\mu}-\beta_{\mu})\ell}_{e} \underline{-j^{2}(\beta_{\mu}$

Abkürzung:

 $g_{+} = \Gamma_{++} \sum_{\nu \neq v} \sum_{e} \frac{-i 2(\beta_{+} - \beta_{i})\ell}{i} ; \quad k_{\mu \neq v}^{2} = \frac{\sum_{\mu \neq v}}{\sum_{\mu \mu} \sum_{\nu \neq v}}$

Die Einsetzung ergibt:

1. Ordnung:

 $K_{1,y}^{(4)} = \bar{z}^{-4} g_{y}$

K2, 1+ = Z -2 k2 2 4 Su St

2. Ordnung:

$$K_{4,\mu\nu}^{(2)} = \overline{z}^{-2} g_{\mu} g_{\nu}$$

$$K_{2,\mu\nug}^{(2)} = \overline{z}^{-3} \cdot \frac{k}{2} g_{\mu} g_{\nu}$$

$$K_{2,\mu\nug}^{(2)} = \overline{z}^{-3} \cdot \frac{k}{2} g_{\mu} g_{\mu} g_{\nu}$$

3. Ordnung:

$$K_{1}^{(3)} \mu \nu g = \underline{z}^{-3} g \mu g \nu g g$$

$$K_{2}^{(3)} \mu \nu g \tau = \underline{z}^{-4} \underline{k}_{g\tau}^{2} g \mu g \nu g g g \tau$$

1.

Zähler:

$$\underline{Z}(n) = \underline{z}^{-1} \int_{01}^{2} \underbrace{S_{11}}_{11} \left\{ \underline{R}_{1}(n) + \sum_{\tau=2}^{n} \underline{k}_{1\tau}^{2} \underbrace{g_{\tau}}_{\tau} \underline{z}^{-1} \underline{R}_{\tau}(n) \right\}$$

Die Schleifen werden zur Nennerfunktion zusammengesetzt:

$$\begin{split} \underline{N}(n) &= 1 - \underline{z}^{-1} \bigg\{ \sum_{\gamma=1}^{n} g_{\gamma} \bigg\} \\ &+ \underline{z}^{-2} \bigg\{ \sum_{\gamma=\mu+1}^{n} \sum_{\mu=1}^{n} g_{\mu} g_{\gamma} (1 - \underline{k}_{\mu+1}^{2}) \bigg\} \\ &- \underline{z}^{-3} \bigg\{ \sum_{\mu=\eta+1}^{n} \sum_{\nu=1}^{n} \sum_{\tau=1}^{n} g_{\mu} g_{\nu} g_{\tau} g_{\tau} (1 - \underline{k}_{\mu\nu}^{2} - \underline{k}_{\mu\nu}^{2} - \underline{k}_{\nu\tau}^{2}) \bigg\} \\ &+ \underline{z}^{-4} \bigg\{ \sum_{\mu=\eta+1}^{n} \sum_{\nu=1}^{n} \sum_{\tau=q+1}^{n} \sum_{g=1}^{n} g_{\mu} g_{\nu} g_{\tau} g_{g} (1 - \underline{k}_{\mu\nu}^{2} - \underline{k}_{\mu\nu}^{2}) \bigg\} \\ &+ \underline{z}^{-4} \bigg\{ \sum_{\mu=\eta+1}^{n} \sum_{\nu=1}^{n} \sum_{\tau=q+1}^{n} \sum_{g=1}^{n} g_{\mu} g_{\nu} g_{\tau} g_{g} (1 - \underline{k}_{\mu\nu}^{2} - \underline{k}_{\nug}^{2} - \underline{k}_{\tau g}^{2}) \bigg\} \\ &- \underline{k}_{\mu\nu}^{2} - \underline{k}_{\mu}^{2} - \underline{k}_{\nu}^{2} - \underline{k}_{\tau g}^{2} - \underline{k}_{\tau g}^{2} - \underline{k}_{\tau g}^{2} - \underline{k}_{\tau g}^{2} \bigg\} \end{split}$$

Ter phaterweened unktion

Polstellen der Übertragungsfunktion

 $\underline{k}_{\mu\nu} = 0$ führt auf:

$$N(n, \underline{k}_{\mu\nu} = 0) = \prod_{\mu=4}^{n} (\underline{x} - \underline{y}_{\mu}) \underline{z}^{-n}$$

Mit Kopplung:

$$\begin{split} \underline{N}(n, \underline{k}_{\mu\nu} \neq 0) &= \prod_{q=1}^{n} (\underline{z} - \underline{g}_{+}) \underline{z}^{-n} \\ &= \underline{z}^{-2} \sum_{\substack{\nu = \mu + 1 \\ \nu = \mu + 1 \\ \mu = 1}}^{n} \underbrace{g_{\mu}}_{\mu = 1} \underbrace{g_{\nu}}_{\mu = \mu} \underbrace{g_{\nu}}_{\mu = \mu}$$

Lösungsansatz für die 1/- te Polstelle:

 $\vec{z}_{+} = g_{+} + \varepsilon_{+}$

Dann kann für den Nenner auch geschrieben werden:

$$\underline{N}(n) = \prod_{\psi=1}^{n} \left(\underline{z} - (g_{\psi} + \underline{\varepsilon}_{\psi}) \right) \underline{z}^{-n}$$

 $|\underline{\mathcal{E}}_{\psi}|$ ist eine kleine Größe; deshalb werden alle $|\underline{\mathcal{E}}_{\psi}|^{m}$ mit m ≥ 2 vernachlässigt, was einer Vernachlässigung der Glieder mit $|\underline{k}^{m}|$ für m ≥ 4 entspricht.

$$N(n) = \prod_{\Psi=4}^{n} (\underline{z} - \underline{g}_{\Psi}) \underline{z}^{-n}$$

$$\frac{4\pi}{2} = \frac{2}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac$$

$$= \frac{z^{-2}}{2} \sum_{\substack{\eta=1 \\ \psi\neq=1 \\ \psi\neq=1 \\ \psi\neq=1}}^{n} \frac{g_{\psi} \xi_{\psi}}{g_{\psi}} \frac{g_{\psi}}{g_{\psi}} \frac{$$

- La Alter La Alter (La)

Scheme für den Koeffizientenvergleich:

$$\sum_{q=1}^{n} \underbrace{\underline{\xi}}_{q} = \underline{A}_{q} = \mathcal{O}$$

$$\sum_{q=1}^{n} \sum_{\mu=1}^{n} \underbrace{g_{+} \underline{\xi}}_{\mu=1} = \underline{A}_{2} = \sum_{\substack{n=1 \\ n \neq p \neq 1}}^{n} \underbrace{g_{\mu} g_{\nu} \underline{k}}_{\mu} \underbrace{k}_{\mu}^{2} + \underbrace{$$

u.s.w.

Es ist dieses ein lineares inhomogenes Gleichungssystem für £+ mit der Koeffizientendeterminante [11] :

$$Det(\underline{E}) = \prod_{\substack{\mu=1\\ \psi=\mu+4}}^{n} (\underline{g}_{\mu} - \underline{g}_{+})$$

Die übrigen Determinanten lauten:

$$Det(\underline{\varepsilon}_{+}) = \left\{ \sum_{\lambda=1}^{n} \underline{A}_{\lambda} \underline{g}_{+}^{n-\lambda} (-1)^{\nu+\lambda} \right\} \left\{ \prod_{\substack{\mu=1\\ \overline{\varepsilon}=\mu+1\\ \mu+\overline{\varepsilon}+\nu}}^{n} (\underline{g}_{\mu} - \underline{g}_{\overline{\varepsilon}}) \right\}$$

Die Lösung des Gleichungssystems ist damit:

$$\underline{\underline{s}}_{\psi} = \frac{\underline{Det}(\underline{\underline{\varepsilon}}_{\psi})}{\underline{Det}(\underline{\underline{\varepsilon}})} = \underline{\underline{g}}_{\psi} \sum_{\substack{\mu=1\\\mu\neq\psi}}^{n} \frac{\underline{\underline{g}}_{\mu} \underline{\underline{k}}_{\mu\psi}}{\underline{\underline{g}}_{\psi} - \underline{\underline{g}}_{\mu}}$$

Der Nenner erhält die Gestalt:

$$\underline{N}(n) = \underline{Z}^{-n} \prod_{\substack{\eta=1 \\ \eta=1}}^{n} \left[\underline{Z} - \frac{1}{3^{+}} \left\{ 1 + \sum_{\substack{\mu=1 \\ \mu=1}}^{n} \frac{\frac{1}{3^{+}} \frac{1}{3^{+}}}{\frac{1}{3^{+}} \frac{1}{3^{+}} \frac{1}{3^{+}} + \frac{1}{3^{+}} \frac{1}$$

$$\underline{N}(n) = \underline{Z}^{-n} \prod_{\psi=1}^{n} (\underline{Z} - \underline{Z}_{\psi})$$

$$\vec{z}_{*} = g_{*} \left\{ 1 + \sum_{\substack{\mu=1 \\ \mu=1 \\ \mu\neq \psi}}^{n} \frac{g_{\mu} - k_{\mu}}{g_{*} - g_{\mu}} \right\}$$
Partialbruchzerlegung der Übertragungsfunktion

$$\underline{I}(n,\underline{z}) = \frac{\underline{Z}(n,\underline{z})}{\underline{N}(n,\underline{z})} = \frac{\underline{z}^{4} \int_{01}^{2} \underline{S}_{11} \left\{ \underline{R}_{1}(n,\underline{z}) + \sum_{\tau=2}^{n} \underline{R}_{1\tau}^{2} \underline{S}_{\tau} \underline{z}^{-1} \underline{R}_{\tau}(n,\underline{z}) \right\}}{\underline{z}^{-n} \prod_{\eta=1}^{n} (\underline{z} - \underline{z}_{\eta})}$$

$$= \underline{z}^{-1} \underline{T}_{1} = \underline{z}^{-1} \frac{\underline{Z}_{1}(n, \underline{z})}{\underline{N}(n, \underline{z})}$$

<u>R</u> und <u>R</u> sind Spezialfälle des Nenners:

$$\frac{R_{4}(n, \underline{z}) = \underline{z}}{\mu = 2} \prod_{\nu=2}^{n} \left[\underline{z} - g_{\nu} \left\{ 1 + \sum_{\substack{\mu=2 \\ \mu \neq \nu}}^{n} \frac{g_{\mu} \underline{k}_{\mu\nu}}{g_{\nu} - g_{\mu}} \right\} \right]$$

$$\underline{R}_{\tau}(n,\underline{z}) = \underline{z} \prod_{\substack{\nu=2\\ \nu\neq\tau}}^{n} \left[\underline{z} - \underline{g}_{\nu} \left\{ 1 + \sum_{\substack{\mu=2\\ \mu\neq\tau}}^{n} \frac{\underline{g}_{\mu} \underline{k}_{\mu\nu}}{\underline{g}_{\nu} - \underline{g}_{\mu}} \right\} \right]$$

Nach [12] gilt, da nur Pole 1. Ordnung auftreten:

$$\underline{T}_{4}(n,\underline{z}) = \underline{T}_{4}(n,0) + \sum_{\psi=1}^{\infty} \operatorname{Res} \left[\underline{T}_{4}(n,\underline{z}) \right|_{\mathcal{I}} \left\{ \frac{1}{\underline{z} - \underline{z}_{\psi}} + \frac{1}{\underline{z}_{\psi}} \right\}$$

=
$$I_1(n,0)$$
 + $\sum_{N=1}^{\infty} \frac{\overline{z}}{\overline{z}_N} \cdot \frac{\mathcal{R}_{es} I_1(n,\overline{z})}{\overline{z}_N \overline{z}_N}$

Die Residuen lauten:

$$\operatorname{Res} \overline{I}_{4}(n, \overline{z}) \bigg|_{\overline{z}_{4}} = \lim_{\overline{z} \to \overline{z}_{4}} \frac{\overline{I}_{4}(n, \overline{z})(\overline{z} - \overline{z}_{4})}{\overline{z}_{4} - \overline{z}_{4}} \bigg|_{\overline{z}_{4}} = \lim_{\overline{z} \to \overline{z}_{4}} \left\{ \frac{\overline{Z}_{4}(n, \overline{z})}{\frac{\overline{z}_{4}(n, \overline{z})}{1 - n}} \right\} = \frac{\overline{Z}_{4}(n, \overline{z})}{\overline{z}_{4} - n} \prod_{\substack{\lambda = 4 \\ \lambda \neq \lambda}} (\overline{z} - \overline{z}_{\lambda}) = \frac{\overline{Z}_{4}(n, \overline{z})}{\frac{\overline{z}_{4}(n, \overline{z})}{1 - n}} \bigg|_{\overline{z}_{4}}$$

Mit $\underline{T}_1(n,0) = 0$ erhält man:

Es ist nur bis n zu summieren, da in der gesamten z - Ebene nur n Polstellen vorliegen.

144 -

Fourierreihenentwicklung der Einhüllenden

Das Reflexionsverhalten des Resonators wird im wesentlichen charakterisiert durch das erste Reihenglied. Die Wirkung der $k_{\mu\nu}^2$ kann vernachlässigt werden, sofern dadurch nicht die Polstelle <u>z</u>1 verändert wird:

$$\underline{T}(n,\underline{z}) = \frac{\Gamma_{01}^{2} \underline{S}_{11}}{\underline{z} \left[1 - \underline{z}^{4} \underline{S}_{1} \left(1 + \sum_{\psi=2}^{n} \frac{\underline{S}_{\psi} \underline{k}_{1\psi}^{2}}{\underline{S}_{1} - \underline{S}_{\psi}} \right) \right]} = \frac{\Gamma_{01}^{2} \underline{S}_{11}}{\underline{z} - \underline{z}_{1}}$$

Die Einhüllende dieser Kurve bei Messung des Reflexionsfaktorbetrages ist die Funktion:

$$\left|\underline{T}(n,\underline{z})\right|_{\max} = \frac{\left|\underline{f}_{01}\right|^{2} \left|\underline{S}_{11}\right|}{1 - |\underline{z}_{1}|}$$

Bei verlustloser Wellentypkopplung, die bei Resonatoren hoher Güte vorliegt, gilt:

$$\frac{k_{11}^{2}}{\sum_{11}^{2}} = \frac{\sum_{11}^{2}}{\sum_{11}^{2}} = -\frac{\left|\sum_{11}^{2}\right|^{2}}{\left|\sum_{11}\right|^{2}} = -\left|\frac{k_{11}}{\sum_{11}}\right|^{2}$$

Damit kann die Einhüllende als Funktion der Kurzschlußschieberstellung berechnet werden:

.....

$$\frac{\left| \Gamma_{01} \right| | S_{11} |}{1 - | g_{1} |}$$

$$\frac{1 - | S_{11} |}{1 - | g_{1} |}$$

$$\frac{1 - \sum_{q=1}^{n} \frac{| k_{11} |^{2} | g_{1} || g_{11} |}{1 - | g_{1} |} \frac{| S_{11} | - | g_{1} | \cos 2\Delta \beta_{11} |}{| g_{1} |^{2} + | g_{11} |^{2} - 2| g_{11} || g_{11} | \cos 2\Delta \beta_{11} |}$$

$$g_{1} = | g_{11} | \qquad j \qquad g_{11} = | g_{11} | = \frac{1}{2} \frac{2\Delta \beta_{11} |}{2}$$

- 145 -

- 146 -

oder:

$$|\mathbf{T}|_{\max} \approx \frac{|\mathbf{\Gamma}_{01}|^{2}|\mathbf{S}_{11}|}{1 - |\mathbf{S}_{1}|} \left\{ 1 + \sum_{\gamma=2}^{n} \frac{|\mathbf{k}_{1+1}|^{2}|\mathbf{S}_{1}||\mathbf{S}_{1+1}| (|\mathbf{S}_{1+1}|^{2} - |\mathbf{S}_{1+1}| \cos 2\Delta\beta_{1}e)}{1 - |\mathbf{S}_{1}|} \right\}$$

Die Fourierreihenentwicklung lautet:

$$|T|_{\max} = 90 + \sum_{\gamma=2}^{n} \sum_{\mu=1}^{\infty} g_{\mu\nu} e^{-i\mu 2\Delta \beta_{\gamma} \ell}$$

 $g_{\mu\nu} = \frac{1}{T} \int \frac{2\pi}{\left[\frac{1}{2} (2\Delta\beta_{\mu} \ell) \right]_{max}} e^{\frac{1}{2} \mu \Delta\beta_{\nu} \ell} d(2\Delta\beta_{\nu} \ell)$

$$g_{\mu\nu} = -\frac{|\Gamma_{01}|^2 |S_{11}|}{1 - |g_1|} \frac{|g_{11}|^2 |g_{11}|}{1 - |g_1|} \left(\frac{|g_{11}|}{|g_{11}|}\right)^{\mu - 1}$$

Bandbreiteverhalten

Die Veränderung der Resonatorbandbreite als Funktion von $\Delta \beta_{\star} \ell$ ist ein wichtiges Kriterium. Betrachtet man wieder das erste Reihenglied, dann ist die Bandbreite des Reflexionsresonators:

$$\delta_1 \approx 2(1-|\underline{z}_1|)$$

$$= 2 \left[1 - |g_1| \left(1 + \sum_{\gamma=2}^{n} \frac{|g_{1\gamma}|^2 |g_{\gamma}| (|g_{\gamma}| - |g_1| \cos 2\Delta\beta_{\gamma} \ell)}{|g_{\gamma}|^2 + |g_1|^2 - 2|g_1| |g_{\gamma}| \cos 2\Delta\beta_{\gamma} \ell} \right) \right]$$

 $d_{1} = d_{0} + \sum_{\mu=2}^{n} \sum_{\mu=1}^{\infty} d_{\mu\nu} e^{-j\mu 2\Delta\beta_{\mu} \ell}$

$$d_{\mu\nu} = -2 \left| \frac{k}{4} \right|^{2} \left| \frac{g_{+}}{g_{+}} \right| \left(\frac{|\frac{g_{+}}{g_{+}}| \right)^{\mu-1}$$

A4 <u>Berechnung des abgetasteten Resonators</u> Die Übertragungsfunktion

Nach Bild 18 wird die Abtastung durch eine in Ausbreitungsrichtung verschiebbare Sonde berechnet. Es ergibt sich ein Transmissionsresonator, dessen Übertragungsfunktion $\underline{b}_{ges}/\underline{a}_0$ benötigt wird. Die Nennerfunktion ist bereits aus A3 bekannt. Pfade:

$$\begin{split} & P_{-1a} = \int_{O_1} c_1 e^{-i\beta_1 z} \\ & P_{1b} = \int_{O_1} c_1 \int_{14} e^{-i\beta_1 z} e^{-i\beta_2 \beta_4 (l-z)} \\ & P_{1bs} = \int_{O_1} c_1 \int_{16}^2 \int_{66} e^{-i\beta_2 \beta_5 l} e^{-i\beta_4 (l-z)} \\ & P_{2a} = \int_{O_1} c_2 \int_{17} \int_{77} e^{-i\beta_4 l} e^{-i\beta_7 (l-z)} e^{-i\beta_7 2\beta_7 z} \\ & P_{7b} = \int_{O_1} c_7 \int_{17} e^{-i\beta_4 l} e^{-i\beta_7 (l-z)} \end{split}$$

Zähler:

 $\underline{\underline{Z}}(n) = \underline{\Gamma}_{01} c_4 \left\{ e^{-i\beta_n \overline{z}} (1 + \underline{S}_{14} e^{-j^2 \beta_1 (l-\overline{z})}) \underline{R}_4(n) \right\}$ + $\sum_{i=1}^{n} \frac{S_{i6}^{2} \Gamma_{66} e^{-j^{2}\beta_{6}\ell} - j^{2}\beta_{6}(\ell-z)}{\frac{R_{6}(n)}{2}}$ + $\Gamma_{01} \sum_{\tau=2}^{n} c_{\tau} \sum_{\tau=1}^{n} e^{j\beta_{\tau} \ell} e^{-j\beta_{\tau} (\ell-z)} (1 + \Gamma_{\tau\tau} e^{-j^{2}\beta_{\tau} z}) \underline{R}_{\tau}(n)$

 $\underline{R}_1(n)$ und $\underline{R}_{\tau}(n)$ sind in A3 berechnet. Damit erhält man für die Übertragungsfunktion:

$$\begin{split} \underline{I}(n,\underline{z}) &= \frac{\underline{b}_{qes}}{\underline{a}_{o}} = \frac{\underline{Z}(n,\underline{z})}{\underline{N}(n,\underline{z})} \\ \underline{Z}(n,\underline{z}) &= \underline{\Gamma}_{o1} c_{4} \bigg\{ e^{-\frac{i}{\delta} \beta_{4} \underline{z}} (1 + \underline{S}_{44} e^{-\frac{i}{\delta}^{2} \beta_{4} (l-\underline{z})}) \underline{R}_{4}(n,\underline{z}) \\ &+ \sum_{\sigma=2}^{n} \underline{R}_{4\sigma}^{2} \underline{S}_{\sigma} \underline{z}^{-1} \underline{S}_{44} e^{-\frac{i}{\delta} \beta_{4} (l-\underline{z})} \underline{R}_{\sigma}(n,\underline{z}) \bigg\} \end{split}$$

+
$$\Gamma_{01} \sum_{\tau=2}^{n} c_{\tau} \underline{K}_{4\tau} \underline{R}_{\tau}(n, \underline{z})$$

$$\underline{N}(n,\underline{z}) = \underline{z}^{-h} \prod_{\gamma=1}^{h} (\underline{z} - \underline{z}_{\gamma})$$

$$K_{1\tau} = S_{1\tau} e^{-i\beta_{1}\ell} e^{-i\beta_{\tau}(\ell-z)} (1 + \Gamma_{\tau\tau} e^{-i2\beta_{\tau}z})$$

Partialbruchzerlegung:

$$\underline{T}(n,\underline{z}) = \underline{T}(n,0) + \sum_{\gamma=1}^{\infty} \frac{\underline{z}}{\underline{z}_{\gamma}} \frac{R_{es} \underline{T}(n,\underline{z})}{\underline{z}_{\gamma}}$$

$$= \sum_{\gamma=1}^{\infty} \frac{\underline{z}}{\underline{z}_{\gamma}^{-(n-1)}} \frac{\underline{z}(n, \underline{z}_{\gamma})}{\prod_{\lambda=1}^{n} (\underline{z}_{\gamma} - \underline{z}_{\lambda})}$$

$$= \prod_{q \neq z} \sum_{q=1}^{n} \left[\frac{\sum_{q \neq q}^{-1} - j\beta_{q} Z}{\sum_{q \neq q} (1 + \sum_{q \neq q} e^{-j2\beta_{q}(\ell-Z)}) R_{q}(n, Z_{q})} \right] \frac{(Z - Z_{q}) Z_{q}(n, Z_{q})}{(Z - Z_{q}) Z_{q}(n, Z_{q})} + \sum_{\substack{q \neq q \neq q}}^{n} \prod_{\substack{q \neq q \neq q}}^{n} (Z - Z_{q}) Z_{q}(n, Z_{q}) + \sum_{\substack{q \neq q \neq q}}^{n} Z_{q}(n, Z_{q}) + \sum_{\substack{q \neq q}}^{n} Z_{q}(n, Z_{q}) + \sum_{\substack{$$

+
$$\sum_{G=2}^{n} \frac{c_{1} k_{1G} c_{G} z_{V}}{(\overline{z} - \overline{z}_{V}) \overline{z}_{V}^{-n}} \prod_{\substack{n \in I \\ \lambda \neq V}}^{n} (\overline{z}_{V} - \overline{z}_{\lambda})$$

+
$$\sum_{\tau=2}^{n} \frac{c_{\tau} \underline{z}_{v} \underline{k}_{4\tau} \underline{R}_{\tau}(n, \underline{z}_{v})}{(\underline{z} - \underline{z}_{v}) \underline{z}_{v}^{-n} \prod_{\substack{n \\ \lambda \neq v}}^{n} (\underline{z}_{v} - \underline{z}_{\lambda})}]$$

A5 Reflexionsresonator mit punktförmiger Leitungsstörung

Der Vergleich der Bilder 18 und 27 ergibt:

$$\underline{S}_{**} = \underline{\Gamma}_{*E} e^{-j^2 \beta_* \ell_2} - \sum_{\substack{\mu=1\\ \mu \neq \nu}}^{n} \underline{\Gamma}_{\mu\nu} \left(\underline{\Gamma}_{*E} e^{-j^2 \beta_* \ell_2} - \underline{\Gamma}_{\mu E} e^{-j^2 \beta_\mu \ell_2} \right)$$

Polstelle des Hauptwellentyps:

$$\underline{Z}_{1} = \underline{\zeta}_{1} \left(1 + \sum_{\gamma=2}^{n} \frac{\underline{\zeta}_{\gamma} \, \underline{k}_{1\gamma}}{\underline{\zeta}_{1} - \underline{\zeta}_{\gamma}} \right) \\
\underline{\zeta}_{\gamma} = \underline{\Gamma}_{\gamma\gamma} \, \underline{\zeta}_{\gamma\gamma} = \frac{-i^{2} (\beta_{\gamma} - \beta_{1}) \ell_{1}}{\underline{\zeta}_{\gamma\gamma} - \frac{-i^{2} (\beta_{\gamma} - \beta_{1}) \ell_{1}}{\underline{\zeta}_{\gamma\gamma} - \frac{-i^{2} (\beta_{\gamma} - \beta_{1}) \ell_{1}}{\underline{\zeta}_{\gamma\gamma} - \frac{-i^{2} (\beta_{\gamma} - \beta_{1}) \ell_{1}}}$$

=
$$\Gamma_{++}\Gamma_{+} e^{-j2(\beta_{+}-\beta_{1})(\ell_{1}+\ell_{2})} + \frac{j2\beta_{1}\ell_{2}}{e}$$

$$\cdot \left\{ 1 - \sum_{\substack{\mu=1\\\mu\neq\nu}}^{n} \underline{T}_{\mu\nu} \left(1 - \frac{\underline{\Gamma}_{\mu E}}{\underline{\Gamma}_{\nu E}} e^{-j^2 (\beta_{\mu} - \beta_{\nu}) l_2} \right) \right\}$$

$$\underline{\underline{k}}_{1\nu}^{2} = \frac{\underline{S}_{1\nu}^{2}}{\underline{S}_{11}} = \frac{\underline{Z}(\underline{\underline{k}}_{1\nu}^{2})}{\underline{N}(\underline{\underline{k}}_{1\nu}^{2})}$$

 $\underline{Z}(\underline{k}_{1+}^{2}) = e^{-j4\beta_{1}l_{2}} \underline{I}_{1+}^{2} \left(\underline{\Gamma}_{1+} + \underline{\Gamma}_{1+} e^{-j^{2}(\beta_{1+} - \beta_{1})l_{2}}\right)^{2}$

 $N(k_{1+}^2) = \prod_{j \in \Gamma_{1E}} \frac{-j^2(\beta_1 + \beta_+)l_2}{e}.$

 $\cdot \left\{ 1 - \sum_{\substack{\mu=1\\\mu\neq\nu}}^{n} \underline{I}_{\mu^{\pm}}^{2} \left(1 - \frac{\underline{\Gamma}_{\mu E}}{\underline{\Gamma}_{\nu E}} e^{-j^{2} (\beta_{\mu} - \beta_{\nu}) l_{2}} \right) \right.$

 $-\sum_{i=1}^{n} \underline{I}_{\mu_{1}}^{2} \left(1 - \frac{\underline{\Gamma}_{\mu E}}{\underline{\Gamma}_{1 E}} e^{-i^{2}(\beta_{\mu} - \beta_{n})l_{2}}\right) \right\}$

 $k_{1+}^{2} \approx \frac{I_{1+}^{2} \left(\Gamma_{1E} + \Gamma_{1+E} e^{-j^{2} \left(\beta_{1} - \beta_{1} \right) \ell_{2}} \right)^{2}}{\Gamma_{1E} \Gamma_{1+E}} e^{j^{2} \left(\beta_{1} - \beta_{1} \right) \ell_{2}} e^{j^{2} \left(\beta_{1} - \beta_{1} \right) \ell_{2}}$

 $\frac{g_{\tau}}{g_{1}} \frac{k_{1\tau}^{2}}{g_{1}-g_{\tau}} \approx \frac{I_{1\tau}^{2} \left(\Gamma_{1E} + \Gamma_{\tau E} e^{-j2(\beta_{\tau}-\beta_{\tau})\ell_{2}}\right)^{2} e^{j2(\beta_{\tau}-\beta_{\tau})\ell_{\tau}}}{\Gamma_{1\tau}\Gamma_{E} - \Gamma_{\tau\tau}\Gamma_{\tau E} e^{-j2(\beta_{\tau}-\beta_{\tau})(\ell_{\tau}+\ell_{2})}}$

Nach Gleichung (27) ergibt sich dann für den Reflexionsfaktor mit den üblichen Vernachlässigungen:

$$T = \int_{-\infty}^{\infty}$$

$$+\frac{\prod_{0=1}^{2}\prod_{1\in}}{\frac{1}{4}\left[1-\frac{1}{4}\prod_{n=1}^{4}\prod_{n=1}^{2}\left(1+\sum_{n=2}^{n}\frac{\prod_{1\neq}^{2}\left(\prod_{n\in}+\prod_{\nu\in}e^{-\frac{1}{2}(\beta_{\nu}-\beta_{\nu})\ell_{2}}\right)^{2}e^{-\frac{1}{2}(\beta_{\nu}-\beta_{\nu})\ell_{1}}\right]}{\prod_{n\in}\prod_{\ell=2}^{2}\prod_{n\in}\prod_{\ell=2}^{2$$

$$\frac{1}{2} = \frac{1}{2} e^{j 2 \beta_1 l_1} = e^{j 2 \beta_1 (l_1 + l_2)}$$

A6 Resonator mit konstanter Krümmung

Berechnung des Reflexionsfaktors <u>r</u> nach Bild 29 unter Vernachlässigung der Endplattenverluste: 1. Pfade:

$$\begin{array}{l}
 f_{0} = \Gamma_{00} \quad ; \quad P_{4} = -\Gamma_{04}^{2} A_{44}^{2} \quad ; \quad P_{2} = -\Gamma_{01}^{2} A_{42}^{2} \\
 P_{3} = -A_{42}^{2} A_{44} A_{23} \Gamma_{04}^{2} \\
 2. \quad Schleifen: \\
 K_{4}^{(4)} = A_{44}^{2} \quad ; \quad K_{2}^{(4)} = A_{22}^{2} \quad ; \quad K_{3}^{(4)} = K_{4}^{(4)} = A_{42}^{2} \\
 K_{5}^{(4)} = A_{12}^{2} A_{44} A_{22} \quad ; \quad K_{4}^{(2)} = A_{44}^{2} A_{22}^{2}
\end{array}$$

$$\begin{split} & t = \Gamma_{00} + \frac{Z}{N} \\ & \underline{Z} = -\Gamma_{04}^{2} \left\{ \underline{A}_{44}^{2} \left(1 - \underline{A}_{22}^{2} \right) + \underline{A}_{42}^{2} \left(1 - 2 \underline{A}_{44} \underline{A}_{22} \right) \right\} \\ & \underline{N} = \left(1 - \underline{A}_{44}^{2} \right) \left(1 - \underline{A}_{22}^{2} \right) - 2 \underline{A}_{42}^{2} \left(1 - \underline{A}_{44} \underline{A}_{22} \right) \\ & \text{Nach [17] gilt in der Krümmung:} \end{split}$$

$$\begin{aligned} \mathbf{x}_{42}^{+} &= \frac{1}{8} \frac{c_{\pm}}{R(z)} = \frac{1}{8} c_{42}(z) \\ \mathbf{A}_{41} &= e^{f_{1} z} \left\{ 1 - \left(\frac{c_{12}}{t_{1}^{+} t_{2}^{+}}\right)^{2} \left(e^{(\varphi_{2} - \varphi_{1})z} - 1\right) \right\} \\ \mathbf{A}_{11}^{2} &= e^{2\varphi_{1} z} \left\{ 1 - 2 \left(\frac{c_{12}}{t_{1}^{+} t_{2}^{+}}\right)^{2} \left(e^{(\varphi_{2} - \varphi_{1})z} - 1\right) \right\} \\ \mathbf{A}_{22}^{2} &= e^{2\varphi_{2} z} \left\{ 1 - 2 \left(\frac{c_{12}}{t_{1}^{+} t_{2}^{+}}\right)^{2} \left(e^{(\varphi_{1} - \varphi_{2})z} - 1\right) \right\} \\ \mathbf{A}_{12}^{2} &= -\left(\frac{c_{12}}{t_{1}^{+} t_{2}^{+}}\right)^{2} e^{2\varphi_{1} z} \left\{ 1 - e^{(\varphi_{2} - \varphi_{1})z} \right\}^{2} \\ \mathbf{N} &= \left(1 - e^{2\varphi_{1} z}\right) (1 - e^{2\varphi_{2} z}) \\ \mathbf{Z} &= -\prod_{0}^{2} e^{2\varphi_{1} z} \left(1 - e^{2\varphi_{2} z}\right) \\ \mathbf{Z} &= -\prod_{0}^{2} e^{2\varphi_{1} z} \left(1 - e^{2\varphi_{2} z}\right) \\ \mathbf{Z} &= -\prod_{0}^{2} e^{2\varphi_{1} z} \left(1 - e^{2\varphi_{2} z}\right) \end{aligned}$$

1 - e

- 153 -

Vernachlässigt sind im Nenner $\left(\frac{c_{42}}{\frac{c_{42}}{2}}\right)^4$

und im Zähler $\left(\frac{C_{12}}{\frac{1}{2}}\right)^2$

Dämpfungserhöhung durch Wellentypkopplung nach Gleichung (52):

 $P_1 = -(\alpha_{K_1} + j\beta_{K_1})$

$$= - \left(\alpha_1 + j\beta_1 + \frac{c_{12}^2}{\Delta \alpha + j\Delta \beta} \right)$$

 $\Delta \beta = \beta_2 - \beta_1 \quad ; \quad \Delta \alpha = \alpha_2 - \alpha_1$

$$\alpha_{K1} = \alpha_1 + \frac{c_{12}^2 \Delta \alpha}{\Delta \alpha^2 + \Delta \beta^2} \approx \alpha_1 + \left(\frac{c_{12}}{\Delta \beta}\right)^2 \Delta \alpha$$

$$\beta_{K_1} = \beta_1 - \frac{c_{12}^2 \Delta \beta}{\Delta \alpha^2 + \Delta \beta^2} \approx \beta_1 - \left(\frac{c_{12}}{\Delta \beta}\right)^2 \Delta \beta$$

Liste der benutzten Symbole

a v	Zulaufende Wellengröße des Wellentyps 🗸
a(p)	Zulaufende Wellengröße des linear-
	polarisierten Wellentyps 🗸 in der
	Polarisationsrichtung p
8	Kreishohlleiterradius
<u>b</u>	Ablaufende Wellengröße des Wellentyps 🛩
<u>b</u> (p)	Ablaufende Wellengröße des linear-
	polarisierten Wellentyps 4 in der
	Polarisationsrichtung p
Cy, CEM	Kurzbezeichnung für Abtastkoeffizienten
^c z [mn]	Abtastkoeffizient der magnetischen
	Längsfeldstärke von H [mn] -Wellen bei
	der Mantelabtastung
°₩[mn]	Abtastkoeffizient der magnetischen
	Azimutalfeldstärke von H [mn] -Wellen
37	bei der Mantelabtastung
c ₩(mn)	Abtastkoeffizient der magnetischen
80	Azimutalfeldstärke von E _(mn) -Wellen
	bei der Mantelabtastung
cr [mu]	Abtastkoeffizient der elektrischen
1. [18:15]	Radialfeldstärke von H [mn] -Wellen
A. S. S. S. S.	bei der Mantelabtastung

- 155 -

1

Cr(mn)	Abtastkoeffizient der elektrischen		
	Radialfeldstärke von E _(mn) -Wellen		
·	bei der Mantelabtastung		
° _t	Kopplungskoeffizient im Knick		
°12	Kopplungsfaktor in der Krümmung		
c(z)	Ortsabhängige Wellentypkopplung		
Cn	Raumharmonische n der periodischen		
	Kopplung		
d (dB)	Dämpfung		
d _o	Mittelwert des Bandbreiteverlaufs		
d yet	Fourierkoeffizient des Bandbreite-		
	verlaufs		
f	Frequenz		
9 ₀	Mittelwert der Einhüllenden der		
	Resonanzkurven		
4µ4	Fourierkoeffizient der Einhüllenden		
	der Resonanzkurven		
h	Instrumentenausschlag bzw. Detektor-		
	ausgangsspannung		
h _O	Mittelwert der Detektorausgangsspannung		
h_(z)	Langsame Abtastschwingungen		
h ₊ (z)	Schnelle Abtastschwingungen		
հ [տո]	rotationsharmonischer Spektralanteil		
h [mn] R	rotationsharmonischer Spektralanteil		
	bei Resonanz		
k	Übertragungsfaktor zwischen der magne-		
	tischen Oberflächenfeldstärke und dem		
	Detektoreingang		

k 52	Ganzzahlige Potenz oder Indexbezeichnung
<u>k</u> ² _µ ⁴ = <u>-</u> <u></u>	Wellentypkopplung im Resonator hoher
Sup Swa	Güte
<u>k</u> (#)	Vorwärtsanregung eines parasitären Wel-
	lentyps an der Störungsstelle µ eines
	Mehrwellentypleiters
1	Wellenleiterlänge
¹ (µ)	Längenkoordinate der Störungsstelleµ
	Azimutale Laufzahl oder Index
m ju	Azimutale Laufzahl des Wellentyps μ
Π	Radiale Laufzahl oder Index oder Zahl
	der Wellentypen oder ganze Zahl
n ₄	ganzzahlige Potenz
[mn]	Indexbezeichnung für H-Wellen
(mn)	Indexbezeichnung für E-Wellen
$\mathbf{p} = \mathbf{S} + \mathbf{j}\boldsymbol{\omega}$	Komplexe Kreisfrequenz
$\underline{P}_{V} = -(\alpha_{K+} + j\beta_{K+})$	Negative Ausbreitungskonstante bei
	Kopplung
P,q	ganze Zahlen
$q = \frac{\lambda}{\lambda_0}$	normierte Wellenlänge
r y	Reflexionsfaktor
E.	Zeitharmonische des Reflexionsfaktors
8	Variable
t	Zeit
t _{gr}	Gruppenlaufzeit
t,	Laufzeit des Wellentyps 🗸
u(t)	zeitabhängige Spannung
^и д	Höhe des Spannungssprungs

- 157 -

	人名德蒂莱克 法行为的现在分词使事件 法法法法	
۷o	Lichtgeschwindigkeit	
Var	Phasengeschwindigkeit des Wellentyps $oldsymbol{ u}$	
$y_{(mn)} = \frac{2\pi a}{2}$	n-te Nullstelle der Besselfunktion	
~g(mn)	m-ter Ordnung	
$y'_{\text{(mo)}} = \frac{2\pi a}{2\pi a}$	n-te Nullstelle der 1. Ableitung der	
f J Ag[mn]	Besselfunktion m-ter Ordnung	
z :20.0	Längenkoordinate	
$z = e^{i z p_1 z}$	Komplexe Variable	
Z .	Polstelle	
	bin miteria international takanana a Marian	
	Abkürzung	
Aur	Streumatrixelement einer Störung mit	
	kontinuierlicher Kopplung	
A(t)	Testfunktion	
B(t)	Antwortzeitfunktion eines Netzwerks	
E	Elektrische Feldstärke	
F(DBL)	Abkürzung zur Berechnung der	
	periodi schen Kopplung	
G	Gewichtsfunktion	
н	Magnetische Feldstärke	
KAT	Abkürzung	
<u>K</u> (n)	≁-te Schleife n-ter Ordnung	
K(n)	∥-te Schleife n-ter Ordnung, die den	
-)/	Pfad P _m nicht berührt	
L	Länge	
$\chi \{ f(t) \} = f(p)$	Laplace-Transformierte von f(t)	
2 { Log }= L(+)	Inverse Laplace-Transformation	

158 -

m , m.,	Instrumentenkonstante		
N	Nennerfunktion		
	Leistung des Wellentyps [mn]		
P.	Pfad 1		
R(z)	Krümmungsradius		
$\underline{R}_{00}(1), R_{+}(1_{2})$	Restglied		
<u>R</u> (n,z,)	Abkürzung		
Res	Residuum		
5 pt 4	Streumatrixelement		
(pq) Sut	Matrixelement der Reflexionsstreumatrix		
	bei zulaufender Wellengröße <u>a</u>(q) und		
	ablaufender Wellengröße <u>b</u> (p)		
(<u>s</u> _R)	Reflexionsstreumatrix		
T	Periodendauer		
I per	Transmissionsfaktor		
Wape (4)	Abkürzung		
Y (1) 40	Abkürzung		
<u>z</u>	Zählerfunktion		
Zµ	Wellenwiderstand des Wellentyps		
z _o	Wellenwiderstand des freien Raumes		
	"我不会""老姐你的问题是个一个公司会。" "		
d.y	Dämpfungskonstante des Wellentyps 🗸		
CKN	Dämpfungskonstante des verkoppelten		
	Wellentyps *		

β.	Phasenkonstante des Wellentyps 🗸
Px+	Phasenkonstante des verkoppelten
$\sim 7 e^{-1}$	Wellentyps
¥#	Ausbreitungskonstante des Wellentyps 4
¥K+	Ausbreitungskonstante des verkoppelten
We Your Stern	Wellentyps 🗸
[0 \$u	$m \neq 0$
0 om = { 1 5 ū,	m = 0
6	Bandbreite
S,	Halbe Halbwertsbreite
£4	Hilfsgröße
ł	Längenkoordinate
X pur	Kopplungskonstante zwischen den
	Wellentypen μ und γ
Kur	Kopplungskonstante für Rückwärts-
	anregung
25 per	Kopplungskonstante für Vorwärts-
	anregung
2	Wellenlänge
λq	Grenzwellenlänge
24	Hohlleiterwellenlänge
2~	Wellenlänge des Typs 🗸
λ _s	Schwebungswellenlänge
2, 4, 4, 8, 6, 2	Indizes
e	Abkürzung

1=012B+(l+l2)	Komplexe Variable
τ	Zeitabschnitt
9 mm	Phasenwinkel eines Streumatrixelementes
KEmnj , Kemn)	Phasenwinkel der Oberflächenfeldstärke
7	Azimutale Koordinate
Yr, Yemn], Yemn)	Azimutaler Orientierungswinkel
ω	Kreisfrequenz
ωg	Grenzkreisfrequenz

 $\frac{\Gamma_{\mu \star}}{\Delta \omega} \\
\Delta \beta_{\nu} = \beta_{\tau} - \beta_{1}$

٨

Streumatrixelement der Meßanordnung Frequenzabweichung

Berücksichtigt die Umwandlungsverluste in einer Kettenschaltung

Schaltungssymbole

Mikrowellensender

Meßobjekt

Anordnung zur Messung des Realteils des Reflexionsfaktors

Teil der Hohlleiterschaltung zur Bildung von $\mathcal{R}_{u} \{ \pm (\omega) e^{j\omega t_{u}} \}$ und $\mathcal{J}_{u} \{ \pm (\omega) e^{j\omega t_{u}} \}$

Krümmer

Sägezahngenerator

F(L)

Fourieranalysator

Spannungsabgriff

Phasenempfindlicher Niederfrequenzgleichrichter

Œ

Leitung

Integrator

Detektor, Mischer, Modulator

Phasenschieber

M

Wellentypfilter

Richtungsleitung

Lochkopplungen

Verzweigung

Auskopplung des elektrischen Feldes, verschiebbar in Ausbreitungsrichtung der Welle, Koppelfaktor einstellbar

Rotationsanalysator

165

14.14.1

Richtkoppler

Viertorrichtkoppler

Kurzachlußschieber

Dämpfungsglied, einstellbar

Wellensumpf

Magisches T

-070-

Wellentypwandler

[1] H. Brand: "Wellengrößen und Wellenmatrizen insbesondere für Mikrowellennetzwerke mit Vieltyp-Wellenleitern" AEÜ Bd 15 1961 p. 48

[2] H.G. Effemey:

"A Survey of Methods used to Identify Mikrowave Fields or Wave Modes in Cylindrical Waveguides" Proc IEE Part B Suppl. No 13, 1959 p. 75

[3] G. Morgenstern:

"Beitrag zur Ausbreitung der H₀₁-Welle im gekrümmten Kreishohlleiter" Diss. TU Berlin 1960

[4] D.S. Levinson: I. Rubinstein

"A Technique for Measuring Individual Modes Propagating in Overmoded Waveguide" IEEE Trans. MTT - 14 p. 310

166

[5] B. Strebel: "Ein Meßplatz zur Bestimmung
 E. Kienscherf von Wellentypwandlereigen R. Türck schaften" Technischer Bericht
 Nr. 93 des Heinrich-Hertz-In stituts Berlin 1968

[6] H. Groll: "Mikrowellenmeßtechnik"
 Vieweg & Sohn, Braunschweig
 1969 p. 203

[7] F.J. Tischer: "Mikrowellen-Meßtechnik" Springer-Verlag 1958 p. 108

[8] D. Schäffler:

"Beitrag zur Analyse von Wellentypgemischen in Hohlleitern mit kreisförmigem Querschnitt" Diss. TH Aachen[,] 1962

[9] G.D. Sims:

"The Influence of Bends and Ellipticity on the Attenuation and Propagation Characteristics of the H_{O1} Circular Waveguide Mode"

Proc IEE Monograph No 58 1953 p.25

"Elektromagnetische Wellenleiter und Hohlräume" Wissenschaftliche Verlagsgesellschaft MBH Stuttgart

[11] B. Strebel:

"Die Bandbreite eines H₀₁-Wellenresonators, in dem mehrere Störwellentypen schwach gekoppelt sind"

Technischer Bericht Nr. 112 des Heinrich-Hertz-Instituts Berlin 1969

[12] W.I. Smirnow:

"Lehrgang der höheren Mathematik" Teil III, 2, Kap. III:"Anwendung der Residuentheorie".

[13] B. Strebel:

"Ein Resonanzmeßverfahren für Wellentypwandler" NTZ 1967 p. 449

[14] G. Reiter: "Generalised Telegraphist's Equations for Waveguides of Varying Cross-section" Proc IEE (Part B) 1959 [15] L. Solymar:

"Spurious Mode Generation in Nonuniform Waveguides" Trans. IRE MTT-7 1959 p. 379

[16] B. Strebel:

"Die Kopplung zwischen H₀₁und H₀₂-Welle in einer Querschnittserweiterung dargestellt auf dem Analogrechner." Technischer Bericht Nr. 65 des Heinrich-Hertz-Instituts Berlin 1962

[17] H.E. Rowe: "Transmission in Multimode W.D. Warters Waveguide with Random Imperfections" The Bell System Technical Journal 1962 p. 1031

[18] H.E. Rowe:

"Approximate Solutions for the Coupled Line Equations" The Bell System Technical Journal 1962 p. 1011 [19] S.P. Morgan:

"Theory of Curved Circular Waveguide Containing an Inhomogeneous Dielectric". The Bell System Technical Journal 1957 p. 1209

[20] G. Garlichs:

"Phasenkonstanten und Schwebungswellenlängen der Eigenwellen im dielektrisch beschichteten Rundhohlleiter" Technischer Bericht des Forschungsinstituts des FTZ November 1973

[21] G. Doetsch:

"Tabellen zur Laplace-Transformation und Anleitung zum Gebrauch" Springer-Verlag Berlin und Göttingen 1947

[22] H.-D. Ferling: H. Kremer "Numerical Evaluation of Transient Processes on Transmission Lines Using the Inverse Laplace Transformation" NTZ 1972, Heft 10 p. 437 [23] E. Hölzler: "Theorie und Technik der Puls-H. Holzwarth modulation" 4. Kapitel, Springer-Verlag Berlin - Göttingen -Heidelberg 1957

[24] M. Busse: "Studienarbeit Nr. 510" am Institut für Hochfrequenztechnik der TU Berlin

[25] P.I. Somlo: "The Locating Reflectometer" IEEE Trans, Vol. MTT - 20, No 2, 1972, p. 105

[26] J. Detlefsen: "Reflexionsstellenortung an MeGobjekten mit Leitungscharakter durch Fouriertransformation des Reflexionsfaktors" NTZ 1972, Heft 6, p. 269

[27] S.F. Adam: "Microwave Theory and Applications" Prentice-Hall, Inc, 1969

[28] G.A. Ware: "Time Domain Reflectometry in Narrowband Systems" Hewlett-Packard Journal März 1972,p 2 [29] A. Traeger: "Reflexionsmessungen an Hohlkabelleitungen" E. Marsch Technischer Bericht des Forschungs-

[30] K.R. Richter: "Measurement of Short Time Changes of Cavity Q and Resonant Frequency" IEEE Trans Vol. MTT - 17 No 6, Juni 1969 p. 339

instituts des FTZ Dezember 1970

"Leitfähigkeitsmessungen an InSb bei 9,4 GHz in hohen elektrischen Gleichfeldern" AEÜ 1970, Heft 7/8, p. 323

> "Gütemessungen an einem mit einem driftenden InSb-Plasma belasteten Resonator"

Technischer Bericht Nr. 142 des Heinrich-Hertz-Instituts Berlin 1971

[33] B. Strebel:

"Gütemessung an einem mm-Wellenresonator bei Kopplung mit driftendem InSb-Plasma" NTZ 1972, Heft 2, p. 69

[31] E. Bonek:

[32] B. Strebel:

[34]	ε.	Bonek:	"Leitfähigkeit von III-V-Halb-
			leitern im Gebiet heißer Elektronen"
			Diss. TH Wien 1971

[35] F. Seifert: "Mikrowellenmessungen der Leitfähigkeit niederohmiger Halbleiter" AEÜ 19, 1965, p. 492

[36] B. Enning: "Studienarbeit Nr. 497" am Institut
 für Hochfrequenztechnik der TU Berlin
 1973

 [37] R. Löffler: "Ein Wellentypwandler zur Erregung
 B. Enning der H₀₁-Welle für 92 - 140 GHz. Seine Fertigung und ein Meßverfahren für die Übertragungseigenschaften" Technischer Bericht Nr. 175 des

[38] C. Mahle:

"Reflexionsmessung in der Leitungstechnik mittels breitbandiger Frequenzmodulation im Mikrowellengebiet" Diss. ETH Zürich 1966

Heinrich-Hertz-Instituts Berlin 1974

		김 사람은 것이 같은 것이 같이 많은 것이 없는 것이 많이 많이 했다.
[39]	W. Krüger:	"Studienarbeit Nr. 458" am
		Institut für Hochfrequenztechnik
		der TU Berlin 1970
[40]	M. Luna-	"Studienarbeit Nr. 521" am
	Hernandez:	Institut für Hochfrequenztechnik
		der TU Berlin 1974
- El San		
[41]	G. Kunert:	"Diplomarbeit Nr. 225" am
	en bohed han sine	Institut für Hochfrequenztechnik
		der TU Berlin 1974
		ng ting an Albert States I ben an
[42]	K. Holzner:	"Studienarbeit Nr. 501" am
		Institut für Hochfrequenztechnik
	s, cha constants	der TU Berlin 1973
	All an ann an the	
[43]	W. Weiß:	"Studienarbeit Nr. 526" am
		Institut für Hochfrequenztechnik
		der TU Berlin 1974
[44]	HJ. Krug:	"Studienarbeit Nr. 533" am
		Institut für Hochfrequenztechnik
		der TU Berlin 1974
C		

[45] J. Kraiczy: "Diplomarbeit Nr. 231" am Institut für Hochfrequenztechnik der TU Berlin 1974

- 174 -

[46] J. Rau:

"Diplomarbeit Nr. 237" am Institut für Hochfrequenztechnik der TU Berlin 1975

[47] G. Garlichs:

Private Mitteilung

Die im Literaturverzeichnis unter den Nummern [24], [36], [40], [41], [42], [43], [44], [45] und [46] angegebenen Arbeiten wurden im Heinrich-Hertz-Institut unter Anleitung des Verfassers durchgeführt. Die zu diesen Arbeiten und zu Bild 24 erforderlichen Fouriertransformationen hat Herr Dipl.-Ing. G. Großkopf vorgenommen.

Herrn Professor Dr.-Ing. F.W. Gundlach und Herrn Professor Dr.-Ing. H. Jungfer danke ich für wertvolle Anregungen, Herrn J. Bachus, Herrn G. Großkopf und Herrn H.-P. Nolting für zahlreiche Diskussionen.

